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ABSTRACT

Abstract Model Theory is a field of Mathematical Logic, in which Mathematicians study the relations
between various “Logics” — which are methods of defining “truth in a structure” (that is, what holds in a
Group, or an Ordering, or a Graph, €c.). This project provides an introduction to the field, with no
prerequisites in Mathematical Logic. We shall encounter various properties of Logics, such as
Compactness, and the Lowenheim-Skolem-Tarski Property; and we shall meet different kinds of Logics:
First-Order Logic, Boolean Logic, and Infinitary Logic, which we shall compare. The project ends with a
foundational result in Abstract Model Theory: Lindstrom’s Theorem, which neatly characterises
First-Order Logic by its properties. This is, to the best of my knowledge, the first self-contained
introduction to Lindstrom’s Theorem, which we work up to, by proving results about “Orthodox Logics’.
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1 INTRODUCTION 1

I INTRODUCTION

I'intend this project to serve as an introduction to the field of Abstract Model Theory, which is a field
of Mathematical Logic, in which researchers seek to categorise and compare different Logics. And,
in particular, I believe that this will be the first comprehensive introduction to the field, from no pre-
requisites in Mathematical Logic, up to Lindstrom’s Theorem — and, so I hope that this project will
serve as useful to those whom want to understand such a key result. In order to get the most out of
reading this introduction, the reader should have some level of mathematical maturity, for example
being a 4th year student at the University of St Andrews, and should been very familiar with basic
algebra (for example, this familiarity could be picked up by the reader having done four of MT2501,
MT2505, MT3501, MT3505, and MT4003); in addition, it would be useful if the reader had some
knowledge of the hierarchy of infinities (i.e., know the difference between countable and uncountable
infinities).

In order to accommodate such ‘lax’ pre-requisites, along the way, we shall encounter, and be intro-

duced to different subfields of Mathematical Logic, namely Model Theory and Set Theory.

We shall begin, in the next section, by introducing the concepts of Boolean Algebra, Model Theory,
and Logic (in our specific sense), and we shall prove that Boolean Algebras are Logics. Then, in Section
3, we shall meet basic Set Theory, and encounter Infinitary Logics — an extension of First-Order Logic,
allowing infinitely long formule. Next, in Section 4, we will meet and prove some properties of First-
Order Logic, comparing them to those of the other Logics we have met along the way. Following this,
in Section 5, we will be introduced to — and prove some results about — the idea of “expressibility”:
the properties that a Logic can “describe”. Finally, in Section 6, we will meet and prove Lindstrom’s
Theorem — a neat result that completely characterises First-Order Logic, and the foundational result
in Abstract Model Theory.

Before we begin, however, here is a list of the notation that shall be assumed:
 If X and Y are sets, then X < Y means “improper subset”; that is, X ¢ X.
* If X is a set, P(X) represents the powerset of X.
* If £ is a function from a set X to asetY, we write f : X — Y.
* Given sets X and Y, we write X x Y to denote the corresponding Cartesian product.
* The empty set is written as a stylised version of the Nordic letter ‘@ @.

* If 4 and B are sets, we write / : A — Bla = g(a)] to mean that f is a function from A to B,
and is defined such that each z in A is taken to g(«).

e We write 4 := B to mean ‘A is defined to be B’.
* If X is a set, we write | X| to denote the size, or cardinality, of X.
* N contains 0.

* “Countable” means “not uncountable”; i.e., we regard finite (including empty) sets as “count-

able”.

* If'a proof ends with ‘W, then I am claiming to have “filled in the details” (and so, the square),
by having done a substantial amount of work (this is not to say that the proof is novel, or that
the claim is novel, but that I have not copied the proof, or have done significant work to fill in
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the details of a proof that appears somewhere else); if however, a proof ends with ‘L7, then I
regard the proof as being “by the book”, and claim no originality.

2 BooOLEAN ALGEBRAS, MODELS, AND LoGICS

In this section, we introduce three notions: Boolean Algebras, Model Theory, and Logics. We begin by
defining and providing some preliminary results about “Boolean Algebras”. This will be reminiscent
of the Algebra modules at the University of St Andrews. Then, we will introduce the basic tenants
of Model Theory, using Boolean Algebras as examples. Next, we will see what a “Logic” is, and we
will see our first example of a Logic: Boolean Algebras; and finally, following this, we shall see that
First-Order Logic is indeed a “Logic” under our definition.

2.1 Boolean Algebras

First, we recall some basic definitions about “operations”, which shall be used to define “Boolean Al-

gebra”.

Definition 2.1.1 (Unary Operation). Let X be a non-empty set. If / : X — X is a function, we
say that f is a unary operation on X.

Definition 2.1.2 (Binary Operation). Let X be a non-empty set. If /' : X x X — X is a function,
we say that [ is a binary operation on X.

We are now ready to define “Boolean Algebra”, following the axiomatisation given in [GHO09]. This
will be done in the same manner as Groups, Rings, €., by giving a list of axioms that the operations
on the underlying set must obey.

Definition 2.1.3 (Boolean Algebra). Let B be an arbitrary non-empty set. We say B is a Boolean
Algebra if and only if it has two binary operations A (read ‘meet’) and V (read ‘join’), a unary operation
=1 (read ‘complement’), and two constants (distinguished elements of B) T (read ‘top’) and L (read
‘bottom’) that satisfy the following list of axioms for all x, y, and z in B:

Commutativity x Ay =yAx; and xVy=yVux;

Distributivity x A (yVz) = (x Ay) V(xAz); and xV (yAz) = (xVy)A(xV2);
Identity x AT =x; and xV 1 =x;

Complements x A7x =1; and xV-x=T;

Associativity x A (yA2) = (¥ Ay)Az; and xV (yVvz)=(xVy) Vs

De Morgan —(x Ay) = =V y; and —(x VvV y) = 2x A 1y

Extremes xAL1L=1; and xvT=T;

Invariance x Ax =x; and xVx = x;
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Duality -1 =T; and -7 = 1;

Double Complement Elimination —-x = x.

Thislist of axioms is, in fact, excessive. The first four are enough to axiomatise the concept of “Boolean
Algebra”. That is to say that the other axioms all follow from the first four. However, it useful to give
a much bigger list to better understand the structure of Boolean Algebras. We shall now see, but not
prove, a powerful fact about (finite) Boolean Algebras:

Theorem 2.1.4. Let B be a finite Boolean Algebra. Then, there exists a finite set X such that B is
isomorphic to P(X), where the meet operation N corresponds to the intersection operation N defined on
sets in P(X); the join operation v corresponds to the union operation U defined on sets in P(X); the
complement operation = corresponds to the set complement operation L defined on sets in P(X) so that
A = P(X) \ A4; the top element T corresponds to the set X; and the bottom element L corresponds to the
empty set Q.

Moreover, given any finite set X, there is some Boolean Algebra B isomorphic to P(X), with respect to the
same operations above.

Proof: see [GHO09, p. 127]. 0

Remark 2.1.5. In fact, any set X with cardinality 7 such that 2” = |B| will do.

In essence, we can thus simply regard computations in finite Boolean Algebras as set-theoretic com-
putations in the powerset of any set X with the required cardinality. So, we may regard finite Boolean
Algebras as familiar objects.

2.2 Models

We are now ready to meet a key concept in Mathematical Logic, known as “structures”, which can
be seen (at least in some sense) as a generalisation of different algebraic concepts, like Groups, Rings,
Vector Spaces, etc. There is an entire field devoted to the study of structures; this is known as Model
Theory. In general, Model Theory studies the relationships between logical sentences and the struc-
tures in which they hold. Today, this field, in terms of applications outside of Mathematical Logic,
has been used to prove results in Algebraic Geometry.

In essence, a structure is a set with some relations and functions defined on it, as well as possible dis-
tinguished elements, known as constants. We identify the £izd of structure by the symbols of the
relations, functions, and constants; and given this set of symbols, known as a vocabulary, we call a
structure a 7-structure, where 7 is the structure’s vocabulary; and we denote the vocabulary of a struc-

ture It by Vocab ().

We shall now give the official definitions of “vocabulary” and “structure”, which I have pastiched
together from [Hod97] and [Mar02]. Then, we shall see some examples.

Definition 2.2.1 (Vocabulary). A vocabulary is a (possibly empty)1 set 7 of function symbols, rela-
tion symbols, and constant symbols. Assigned to each function symbol and to each relation symbol

n the context of First-Order Logic; Boolean Logic bans empty vocabularies.
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is a positive integer known as its 27:ty; a function symbol with arity 7 is a symbol corresponding to an
n-place function — this holds, likewise, with relations.

Remark 2.2.2. For the purposes of this project, unless otherwise noted, we assume that all vocabular-
ies are, at most, countable sets; and we assume that the relations and functions have a finite arity, but
this can be relaxed if required.

Now, we have seen the definition of a “vocabulary”, we can examine some examples:

* {1} - this is the vocabulary of Groups; * is our binary function symbol (used to represent
Group multiplication), and ‘1’ is our constant symbol (used to represent the Group identity);

 {,1, _1} — this is an alternative vocabulary of Groups; in addition to our binary function sym-
bol, and our constant symbol, we add a unary function symbol ¢ -b (used to represent Group
inverses);

* {-,+,1,0} - this is the vocabulary of Rings; we have our binary relation symbols - and ‘+,
Ring multiplication and addition, respectively, and we have ‘1’ and ‘0’, the multiplicative and
additive identities;

* {A,Vv,7, T, 1} — this is the vocabulary of Boolean Algebras; we have our two 2-place function
symbols ‘A’ and ‘v’ (representing meet and join, respectively), we have our 1-place function
symbol ‘=’ (representing complement), and we have our two constant symbols ‘T’ and ‘L’ (rep-
resenting top and bottom, respectively); and

* {<} - this is the vocabulary of orders; we have only a single binary relation symbol ‘<’.
Itis useful to be able to take from a vocabulary the sets of relations, functions, and constants individu-

ally; and, in fact, we can do one better, as seen in our next definition:

Definition 2.2.3. If 7 is a vocabulary, we write Const(7) for the subset of 7 containing only and all
the constant symbols in 7. Similarly, for each z € w, we write Rel,, () for the subset of 7 containing
only and all the #-ary relation symbols in 7. Again, for each # € w, we write Func,(7) for the subset
of 7 containing only and all the z-ary function symbols in 7.

We are now ready to meet structures, the main object of study in Model Theory.
Definition 2.2.4 (Structure). Given avocabulary 7, a 7-structure I is a non-empty setM, denoted
Dom (), called the domain of I together with

* for each constant symbol ¢ € Const(7), a distinguished element ¢ of M;

* for each positive integer 7, and each z-ary function symbol f € Func,(7), an z-ary function
f " M — M; and

* for each positive integer 7, and each #-ary relation symbol R € Rel, (7), an z-ary relation on
M.

Given a structure, we can define a function which picks out the corresponding constant, function, or
relation to each symbol of the vocabulary:
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Definition 2.2.5 (Interpretation). Let 7 be a vocabulary, and It a z-structure. We define an inzer-
pretation function gy : T — MM\ {Dom (M)}, which takes in a symbol s of the vocabulary 7, and gives
us the ‘interpretation’ of that symbol s in 9t.

We shall now see some examples of structures.

* Let7 = {, 1}, the vocabulary of Groups. Then, the Group K, defined by the following Cayley
table is a 7-structure:
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* Again, let 7 = {-, 1}, the vocabulary of Groups. Then, if 0 is a structure, with domain M =
{x, 9, 2}, tan (1) = x, and sy () being the function that maps any pair from M? to x € M, with
no other constants relations, or functions, M is a 7-structure. Note that this is not a Group.

* Let7 = {, +, 1,0}, the vocabulary of Rings. Then, Z with the usual addition and multiplica-
tion, and with distinguished elements 0, 1 € Z, is a 7-structure.

* Letz = {A,V,,T, 1}, the vocabulary of Boolean Algebras. Then, if X is a finite set, P (X)
together with union, intersection, complement in P(X), X, and @ is a 7-structure — and, fol-
lowing Theorem 2.1.4, a Boolean Algebra.

* Let 7 = {<}, the vocabulary of orders. Then any non-empty set A1 together with a binary
relation R on M, defined to hold for any pair of elements of A1 is a z-structure if we interpret
the symbol ‘<’ as R, and we have no further constants, functions, or relations.

It is oft convenient to quickly write a structure, given pre-existing definitions of constants, relations,
and functions. This motivates the following notation: given a set M, and if ¢, ¢;, .., ¢,,, are constants,
f1> o> s [, are operators (functions from (tuples of) and to M) on M, and Ry, R,, ..., R, are relations
on M, we can write the given structure as (M; ¢}, ¢, ... s s f15 fos o5 fos R15 Ry .o s Ry). For example,
we can write the structure corresponding to the Ring Z as (Z; -, +, 0, 1), where - and + are defined in
their usual way.

Sometimes, it is necessary to restrict ourselves to just a portion of a structure; and to do that, we use
the following definition:

Definition 2.2.6 (Reduct). Let 7 be a vocabulary, and 0t a z-structure. If ¢ € 7 is a vocabulary,
and M is a 7-structure, then we define N | o, the o-reduct of M as the o-structure that is obtained by
removing all of the constants, functions, and relations in 9, which come from the vocabulary 7, but
not the vocabulary o.

For example, if 7 = {-, 1}, the vocabulary of Groups, and ¢ = {-}, thenaso < 7,if M := (G; +,¢) isa
r-structure, the ¢ reduct of M, M | & = (G; +).

Just as we are interested in removing constants, functions, and relations corresponding to fragments
of our vocabulary, we are sometimes interested in expanding structures, by adding new constants,
functions, and relations corresponding to symbols not appearing in our original vocabulary. This
motivates the following definition.
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Definition 2.2.7. Let & and 7 be vocabularies such that ¢ N 7 = @, and M and N be ¢ and z-
structures, respectively, with Dom(9t) = Dom(9t). Then we write Jiud to denote the (cU7)- struc-
ture obtained by adding all of the constants, functions, and relations from 9t into 9t (or, indeed, vice
versa).

For example, consider the {:, 1}-structure (Z; +, 0) (the additive Group), and the {<}-structure (Z; <)
(Z with its usual ordering), then we can combine the two structures (using the L operation) to obtain
a {-, <, 1}-structure (Z; +, <, 0) — the additive ordered Group Z.

There is one more large topic to be introduced in this subsection — isomorphisms. Just as we have
Group isomorphisms, order isomorphisms, Ring isomorphisms, €., we can define 7-isomorphisms,
where 7 is any vocabulary.

Definition 2.2.8 (7-isomorphism). Let 7 be a vocabulary, and 9t and 9t be z-structures. Then we
call a bijection ¢ : Dom(It) — Dom(N) a r-isomorphism if the following conditions hold:

e foreach ¢ € Const(7), ¢(1gy(c)) = 19 (c);

e for each positive integer 7, each /€ Func,(7), and each z-tuple (2, m,, ..., m,) € Dom(IN),

P(tan (f) (my,my, .. ymy,)) = iy (F)(p(my), ¢(my), ..., ¢(m,)); and

* for each positive integer 7, each R € Rel, (), and each n-tuple (2, m,, ..., m,) € Dom(IN),
tan (R)mym, - m,, if and only if 19 (R)$ () p(m,) -+ ¢(m,,).

We adopt the standard notation to show the existence of an isomorphism between two 7-structures:
Definition 2.2.9. If two 7-structures 9t and 9t are isomorphic, we write 9t = .

For example, if we have two {-, 1}-structures, which are Groups, and they are Group isomorphic, by
¢, then ¢ is also a {-, 1}-isomorphism.

However, we can also have {, 1}-isomorphisms, which are not Group isomorphisms, if neither of the
{-, 1}-structures are Groups. This happens in the following case: we have {-, 1}-structure M := (M :=
{x, 9,8} [+ MxM — M][(a,b) — x], x), then the bijection ¢ : M — M definedbyx - x,y - z,
and z — yisa {-, 1}-isomorphism, because ¢(19y(1)) = ¢(x) = x = 19(1), and, for arbitrary 2 and &
in M, $(1()(,6)) = $(F(a, ) = $(x) = x = F($(a), 3(5)) = 1) ($(a), $(2)).

Finally, we introduce a final definition, before we proceed onto the next section on Logic:

Definition 2.2.10. Let o and 7 be vocabularies. If -* : 7 — ¢ is a bijection, and maps constant
symbols to constant symbols, z-ary function symbols to z-ary function symbols, and 7-ary relation
symbols to #-ary relation symbols, then we call -* a renaming, and given a z-structure I, we can write
9" to represent the corresponding o-structure, which arises as the result of replacing all the symbols
of 7 by the corresponding symbols (under -*) in o.

For example, if 7 = {,0} and ¢ = {+, 1}. Then, the function-" : 7 — o defined by - » +and 0 — 1
is a renaming, and if M is a 7-structure, the renamed structure M = (Dom(M); 19y (+), 92 (0)), and
tae (+) = tn () and sy (0) = 19y (1).
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2.3 Logic

We shall now meet the notion of “Logic” (I take the specific definition from [Ebb16]). We will then
prove that we can construct, from Boolean Algebras, a class of “Logics”.

Intuitively, a Logic, is a method of testing for “truth in a structure”; we are given a list of properties that
we can check for, and a method of checking if they hold. The following definition seeks to generalise
this notion.

Definition 2.3.1 (Logic). A Logic is a function £ from vocabularies to strings of symbols (known as
L-sentences), together with a relation k&, between structures and £-sentences (we read ‘F,’ as ‘mod-
els in £’ — and, we often write £ to mean the entire function-relation pair) such that the following

properties hold:
(i) if7 c o, then L(7) < L(0);
(ii

) if M =, ¢, then ¢ € L(Vocab(IM));
(iii) (¢he isomorphism property) it M &, ¢ and M = N, then N &, ¢;
)

(iv) (the reduct property) if ¢ € L(r) and 7 € Vocab(IMt), then M =, gifand only it M | 7 =, ¢;

and

(v) (the renaming property) if * : © — ¢ is a renaming, then for every ¢ € £(7), there is a sentence

¢’ € L(7) such that for any 7-structure M, M &, ¢ if and only if M* =, ¢’

Informally, we take “¢ being modelled by Mt in £” as being some truth-claim about ¢ in M, with
respect to the Logic £; and, again, informally, each of the above conditions has the following meaning,
respectively:

(i) every L-sentence is determined by some (possibly none) symbols in a given vocabulary;
(ii

) agiven structure I can only model (in £) L-sentences that depend on the vocabulary of Mi;
(iii) the modelling relation is invariant under isomorphism;
)

(iv) ifa.L-sentence ¢ is true in a structure It with respect to the Logic £, then itis true only in virtue
of the relationships between the interpretations of the symbols upon which ¢ is determined by;
and

(v) after renaming a structure, there is a new renamed L-sentence with the same meaning as any
L-sentence before the renaming.

So, this definition of “Logic” is trying to capture the key notions of what it means for a concept of
“truth in a structure”. We shall now see our first example of a Logic: a Boolean Algebra (or, as we shall
call it from now on, a “Boolean Logic”). We will begin by defining our Boolean-Logic-Sentences, and
once we have seen it, we will define how to check for “truth in a structure” given a Boolean Logic.
The definition is inductive, and later on, we shall use (almost — there shall be only two exceptions) the
same definition for the sentences of First-Order Logic.

Sometimes we read M =, ¢ as “M satisfies ¢” or as “¢ is true in M (according to the Logic L).
We also use, as shorthand, where X is a set of £(7)-sentences, M =, X to mean for each ¢ € X,
M=, .
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2.3.1 Sentences of Boolean Logic

We have a (never-ending) supply of variables. Typically, these are denoted by x, y, x;, x5, 91, 5, €.
Our simplest “subsentential-unit” is a zerm, these show up in sentences, but are never sentences them-
selves.

Definition 2.3.2 (Terms). Given a vocabulary 7, we define the terms of Boolean Logic as follows:
* every variable;
* every constant symbol in Const(7);

e foreachn e Z*, if / € Func,(7),and if 1, ..., 2, are terms, then so is £(#, ..., £,); and

n

e that’sall.

Let 7 = {-, 1} be the vocabulary of Groups. Then, we have only one term (of the second kind) of
Boolean Logic, given 7, namely 1, because 1 € Const(z), and is the only constant symbol in 7. We
know, that by the first bullet point, that each variable is a term, and by the third, we also know that
1-1isaterm, and so are x - 1 (where x is a variable) and (1 - 1) - 1. More precisely, we should write
-(x, y) instead of x - y, by the above definition, but it is easy to see what is meant, so we stick to the
normal convention.

The idea of a term (given a vocabulary 7), is that it somehow refers to — or, “picks out” — some element
of the z-structures.

Using these terms, we can build up to our simplest sentential unit, known as an “atomic sentence”,
but first, we need to define a slight generalisation of “sentences”, known as “formul”, and we begin
with “atomic formula”, which are the simplest formulz.

Definition 2.3.3 (Atomic Formulz). Givenavocabulary 7, we define the atomic formule of Boolean
Logic as follows:

* if ; and ¢, are terms of Boolean Logic, given 7, then #; = ¢, is an atomic formula (of Boolean
Logic, given 7);

* foreachn € Z",ifR € Rel, (7),andif 7, ..., 2, are terms of Boolean Logic, given 7, then R#; - ¢,
is an atomic formula (of Boolean Logic, given 7); and

e that’s all.

Following our previous example, where 7 = {-, 1}, we can look at some of the atomic formule of
Boolean Logic, given 7: given the first bullet point, we know that1 = 1,x = 1,1 = x,and x = yareall
atomic formule of Boolean Logic, given 7, where x and y are variables, because 1, x, and y are terms.
Given 7, we have no atomic formule of the kind specified by the second bullet point, because there
are no relation symbols in 7. If, however, we expand 7, by defining a new vocabulary to also include
the binary relation symbol <, so 7’ := 7 U {<} (which is the vocabulary of ordered Groups), then we
will have some atomic formulz of the second kind (given 7). In particular, here are some examples of
atomic formulz of Boolean Logic (given 7’) are (where x and y are variables): 1 < x, (1-1) < 1, and
(I-x) < (x-(x-y)). Again, notice how we write x < y, rather than < xy, as our definition strictly
calls for.
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I'said that atomic formule were a generalisation of atomic sentences; so, we shall now see the definition
of an atomic sentence. We say that an atomic formula of Boolean Logic (given a vocabulary 7) ¢ is an
atomic sentence of Boolean Logic (given a vocabulary 7) if and only if ¢ contains no variables. The idea
behind atomic sentences is that there is a direct way to check whether they are “true in a structure”,
whereas to check whether a non-atomic sentence is “true in a structure”, we rely on the facts about
the truth of the atomic sentences. That is to say that the truth of non-atomic sentences supervenes on
the truth of the atomic sentences in a given structure. This idea shall be made explicit when we define
our “models” relation for Boolean Logics (and later for First-Order and Infinitary Logics).

» <«

We often write “terms”, “sentences”, “formule”, €., when the vocabulary and Logic in question is
clear.

We shall now define our direct way of checking whether an atomic sentence holds (is satisfied) in a
structure.

Definition 2.3.4. Let It be a 7-structure, then there exists a function %y, which takes an atomic
sentence of Boolean Logic, given the vocabulary 7, and outputs either 0 or 1 depending on whether
the atomic sentence holds in 9 or not.

Before explicitly defining this function, however, we first give a function which, when given a term
returns the element of the domain which the term should be interpreted to, and when given a relation,
gives the corresponding relation of the structure. We shall call this function »y, for a given z-structure
9. We will inductively define this function, given a term, without variables, of Boolean Logic (given
the vocabulary 7) or given some R € | J,_,, Rel,(7):

* if # is a term of the form ¢ for ¢ € Const(7), then wj; (£) = ty(c);

* if zisaterm of the form f(#, ..., 2,), where 1, ..., #, are terms, and f € Func, (7), then %, (z) =
tn () (g (81) - m (8,)); and
* if R € J,,. Rel,(7), then ny = 193(R).
We can now inductively define xyy as follows, given a 7-structure 9t and an atomic sentence of Boolean
Logic (given 7) ¢:
 If ¢ is of the form #; = £, where #; and #, are terms, then %y (¢) = 1if and only if (and 0
otherwise) %, (#,) = %y (%); and

* If ¢ is of the form Rt; -, for terms ¢, ..., £,,, then ny (¢) = 1 if and only if (and 0 otherwise)
the relation »y, (R) %y, (#) = % (,) holds.

For example, we will let 7 = {-, <, 1} be the vocabulary of Ordered Groups, and we will consider the
7-structure (Z; +, <, 0) (the additive Group with the usual ordering on the integers). Then, clearly
¢ =< -(1,1) - (1,-(1,1)) is an atomic sentence of Boolean Logic, given 7, and so we can calculate

s ()

s ($) = 1 5 ( ({1 1), (1, (1, 1) holds
< (u (1) + 25 (1)) < (v (1) + (3 (-(1,1))) holds
< (0+0) < (0+ (x(1) +»y(1)) holds
<= 0<(0+(0+0)) holds
=0<0

And, so, ny (¢) = 0.
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We shall now see how, using atomic formule, we can build up to “full formulz”, and from there we
can define, analogously to atomic sentences, “full sentences”.

Definition 2.3.5 (Formulz). Given a vocabulary 7, we define the formule of Boolean Logic as fol-
lows:

* if ¢ is an atomic formula of Boolean Logic, given 7, then ¢ is a formula;
* if ¢ and ¢ are formula of Boolean Logic, given 7, then (¢ A ¥) is also;

* if ¢ and ¢ are formula of Boolean Logic, given 7, then (¢ Vv ) is also;

if ¢ is a formula of Boolean Logic, given 7, then =1¢ is also; and

that’s all.

We often omit brackets inside formule, where the meaning is still clear; and we almost always omit
any pair of brackets that would be the outermost symbols in the formula (sometimes we add brackets
too, where the meaning would be more clear).

Given the vocabulary of Groups, 7 = {-, 1}, we know that the following are formul of Boolean Logic
(where x and y are variables): ((x-y) <1)Ax=y,x<l,and (1 <1)V-(x <1AL< (x-%)).

Again, we define the sentences of Boolean Logic (given a vocabulary 7) to be the formulz of Boolean Lo-
gic (given 7) such that no variables appear in them. We can see a hint of the idea that atomic sentences
depend only on the structure itself, whereas non-atomic sentences are built up from these units, given
this definition, as the atomic sentences are our only “basis case” in our inductive definition. We can
also see that our definition of the sentences of Boolean Logic mirrors that of a Boolean Algebra: if we
were somehow able to map all the atomic sentences into elements of a Boolean Algebra, then every
formula would be an expression in the given Boolean Algebra, and so would be equal to some element
of the Boolean Algebra. This is the idea that we will use, shortly, to define Boolean Logic.

Given the language of ordered Groups, 7 = {-, 1, <}, all of these sentences of Boolean Logic, given 7
are the atomic formule, where no variables appear, but only the constant 1. For example, ((1-1) <
DAl=11<1,and(1<1)v-(l<1Al<(L-1)).

The reason that formule are a generalisation of sentences, is that we can view formulz as functions,
from the set of constants of the relevant vocabulary onto sentences of the relevant vocabulary. We
simply have to define which variables map to which constants. We can see that, by setting x, y = 1,
we obtain the sentences ((1-1) < 1) Al =1,1<1l,and(1 <1)va(l <1A1l<(1-1))from
the formule ((x-y) < 1) Ax = y,x < l,and (1 < 1) Va(x < 1 A1 < (x-)). There is a standard
notation for this. If ¢ is a formula whose variables are among a set of variables V' = {v;,v,,...,0,},
then we can write ¢(v;, v,, ..., v,) to signify this fact, and if ¢;, ¢, ..., ¢, is a sequence of constants of the
relevant language, then we can write ¢(¢;, 6, ..., ¢,) to obtain the sentence resulting from replacing all
the occurrences of the variable v; by the constant symbol ¢;, and all the occurrences of the variable v,
by the constant symbol ¢,, and so on. For example, if ¢ is ((x - y) < 1) A x = y, then we can write
#(x, y) to signify that ¢’s variable are among {x, y}, and then ¢(1,1) is ((1-1) < 1) A1l = 1.

2.3.2 Boolean Logic Modelling Relation

We have now seen enough information to be able to define our ‘models’ relation for Boolean Logic.
We will, as said before, map all of the atomic sentences onto elements of the Boolean Algebra, and,
given a sentence, we can, after the mapping of atomic sentences, evaluate the resulting expression of
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the Boolean Algebra, and then, we shall check if this value is in a special set, called the designated
values; we view this set as the set of elements of the Boolean Algebra that tell us that a sentence is a
true. We shall see this, formally, in our next definition.

Definition 2.3.6 (Boolean Logic). Given a Boolean Algebra B, a subset D < B (the designated
values), and a mapping ¢ which takes any atomic sentence of Boolean Algebra (given any vocabulary),
and maps it so some element of B, we can define the Boolean Logic By, w which consists of a function
B, defined on vocabularies, that gives us all the Sentences of Boolean Logic, given the vocabulary 7
and a relation = between structures and By, ,-sentences, and is defined, using another function ¢

(which we shall deﬁne after), as follows (given a vocabulary 7, a T-structure I, and some ¢ € B(7)):

M 5, ¢ ifandonlyif «'(¢) € D.

We will now define ‘u', inductively: which maps sentences into elements of the Boolean Algebra (given
avocabulary 7, a 7-structure I, and some ¢ € B(7)):

* if ¢ is an atomic sentence, then ' (@) = u(¢) if wy(#) = 1, and &' ($) = ~(¢) otherwise (the

= is Boolean complement);

* if ¢ is of the form ¢ A y, then &' (¢) = &' (¥) A ¢’ (y) (that is, our Boolean meet on the right of
the equality);

* if ¢ is of the form ¢ V y, then ' (¢) = ' (¥) v ¢'(y) (that is, our Boolean join on the right of
the equality); and

* if ¢ is of the form -1, then x'(#) = —%’(¥) (that is, our Boolean complement on the right of
the equality).

For an example, we will use the following Boolean Algebra B: the domain is {T, 1, -, -} (top, bottom,
left and right), and our operations are defined as:

[T F 41
I

LT A>
LT A
=T T|T
oL - 1|1
N SIS
F LT A<
- 4 - A
T 4 T 4T
11+ 4L
LT A

Our designated values D, will be T and -. We will consider the vocabulary 7 = {-, <, 1}, of Ordered
Groups. Our 7-structure I will be (Z; +, <, 0) (that is, the additive Group, with the usual ordering

on the integers). We will only define some values of x thatare relevant tous. Weshallset (1 =1) =T
andpu(1<1) =

Then, we consider the sentence ¢ := (1 = 1) A =(1 < 1).
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4:»/,4’(¢) eD

= @A=1)rg((1<1)eD
= (u(l=1)Ar-w'(1<1)eD
= (T/\—|—| —1) eD

= (TA-F)eD

= (TA4)eD

=-e D,

asuy(1=1) = 1,and (1 < 1) = 0; hence; M 13 4.

We shall now provide a sketch of the proof” that Boolean Logics are indeed Logics.

Theorem 2.3.7. Every Boolean Logic is a Logic.

Sketch of proof: Let By, , denote a Boolean Logic on the Boolean Algebra B.
* Certainly, 7 € ¢ implies that B(7) € B(¢), from our definition;
* if M =g ¢, then ¢ € B(Vocab()), again, by definition;

* it can be shown that if M = N, then 3y (¢) = uy(4) for any atomic ¢ € B(Vocab(IN)), and
then, we can inductively prove the isomorphism property;

e the reduct property follows by our inductive definition: if 9t kg ¢, and gisaB(r)-sentence

then it can be shown that ¢ depends only and fully on B(T)—atornfc sentences, which, it can be
shown that, (they) are described by the 7-reduct of i, and so the reduct property follows;

* the renaming property also immediately follows from the inductive definitions: the required
sentence is just the result of applying the renaming to the original sentence.

If the reader is interested, they can prove these properties formally, given the above sketch.
We shall now define ‘Logical strength’:

Definition 2.3.8 (Logical Strength). Let £ and £’ be Logics. We say that £ is as strong as £ (or,
equivalently, call £ a Sublogic of L), and write £ < £’ if and only if for any vocabulary = we have

{M; M=, ¢} pe L()} < {{M; M=y, @) g L()}

Essentially, what the above definition says, is that we call £ a Sublogic of L' if and only if for any
formula £-sentence ¢, there is an L' -sentence ¢' such that ¢ and ¢' are modelled by the same set of
7-structures. So, very informally, we say a Logic is a Sublogic of another when the ‘stronger’ Logic has

2 All this background information, for the first “proof” to only be a sketch... Disappointing, I know.
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at least as much expressive power, in terms of “picking out properties of structures”, as the ‘weaker’
Logic.

If £ < £, and ¢ € L(7) for a given vocabulary 7, then we often write ¢ (yes; this is not a typo!) to
denote an arbitrary £'-sentence ¥ € £'(7), which is such that

{0 M e, o) = {DG Mey, v
we do this because itis convenient to view the weaker Logic as genuinely embedded in the stronger.

Let C be an arbitrary Boolean Algebra, x; be arbitrary, and D; = @, then resulting Boolean Logic
Cp, , Can be seen to, for any 7-structure, and any ¢ € B(7) to have Mt #¢ , ¢, for there is no way

for u(¢) to lie in Dy, as D, is empty. Thus, if we have another Logic £, with a sentence that holds in
no structures, then G, , is a Sublogic of £ (we shall see that First-Order Logic is such a Logic, and
s0 Cp, ,, is a Sublogic of First-Order Logic). A different Boolean Logic with such a sentence can be
constructed as follows: let B be our four element Boolean Algebra defined on {T, 1,+, 4}, and set D, =
{7}, and let u, be such that for any vocabulary 7 there exists atomic ¢, € B(7) such that u,(¢,) =+.
Then, we see that for any z-structure I, N e, ¢,, because uy(¢,) € {+,7 +} = {~, -}, and

{F,4} N D, = @, so no matter whether wy (¢,) = 0 or ny(¢,) = 1, y;(gér) = u,(¢,) ¢ D.

Explicitly, then, for any vocabulary 7,
(M g, ¢hs ¢ €B()} = 10 ¢ € B} = {0} < (M gy, $% ¢ € B,

as {IN Z ¢.1 = Q.
And, so, @me < ‘BDM‘z'

We also have a notion of when Logics are equivalent; that is, when they both have the same express-
ive strength (a notion that will be made explicit in Section 5). But, the definition is easy enough to
understand, given one understands “Sublogic”.

Definition 2.3.9. We say that two Logics £ and L are equivalent if and only if £ < L and 0 < L.

2.4 First-Order Logic

Justas we defined our sentences of Boolean Algebras (given a vocabulary 7), we can formally define the
sentences of First-Order Logic (given a vocabulary 7). The resulting set of sentences will be familiar,
as we are used to working with First-Order Logic. The sentences of First-Order Logic are almost the
same as those of Boolean Algebras, but we also allow quantification (that is, we can say sentences such
as “for all x, there is something bigger than x”), implication (“if x, then y”), and we define something
to be false in all structures.

2.4.1 Sentences of First-Order Logic

We begin by defining our terms of First-Order Logic in the same way as before. Once again, we have
a stock of variables: x, y, x;, x,, 31, 7, &

Definition 2.4.1 (Terms). Given a vocabulary 7, we define the terms of First-Order Logic as follows:

* every variable;

* every constant symbol in Const(7);
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* foreachn € Z",if f € Func,(7), and if 7, ..., #, are terms, then so is £(#, ..., 2,); and

e that’s all.

Our atomic formulz (and consequently atomic sentences) are the same as before, but we also include
“1”, which we will take to always be false (that is, L is not true in any structure).

Definition 2.4.2 (Atomic Formulz). Given a vocabulary 7, we define the atomic formule of First-
Order Logic as follows:

* 1 isan atomic formula;
* if'#; and ¢, are terms of First-Order Logic, given 7, then #; = #, is an atomic formula;

* foreachn € Z",if R € Rel(7), and if 4, ..., 2, are terms of First-Order Logic, given 7, then
Rt - t, is an atomic formula; and

* that’sall.

Again, from our atomic formule we can build our formule, using a similar definition to that for
Boolean Algebras, but we add some new cases: —, for “implication”, 3 for “existential quantification”,
and V for “universal quantification”. So, in our structures, we can quantify over members of the
domain, rather than always making reference to a specific member of the domain, via a constant, like
in Boolean Algebras.

Definition 2.4.3 (Formul®). Given a vocabulary 7, we define the formule of First-Order Logic as
follows:

* if ¢ is an atomic formula of First-Order Logic, given 7, then ¢ is a formula;

* if ¢ and ¢ are formule of First-Order Logic, given 7, then (¢ A ¢) is also;

* if ¢ and ¢ are formule of First-Order Logic, given 7, then (¢ — ¥) is also;

* if ¢ and ¢ are formule of First-Order Logic, given 7, then (¢ v ¢) is also;

* if ¢ is a formula of First-Order Logic, given 7, then =1¢ is also;

* if ¢ is a formula of First-Order Logic, given 7, and v is a variable, then so is Jv¢;

* if ¢ is a formula of First-Order Logic, given 7, and v is a variable, then so is Vog; and

e that’s all.

In practice, however, we treat ¢ V ¢ as an abbreviation for =1((=¢ A =¢), ¢ — ¥ as an abbreviation for
—1¢ V ¥, and Vg as an abbreviation for =3v=1¢. So, we can dispense of the clauses for v, —, and V.
Moreover, we treat ¢ <> ¥ as an abbreviation for (¢ — ¥) A (¥ — ¢).

We also often omit (or add brackets) when the meaning is clear; we typically omit a pair of brackets if
they are the outermost symbols.

Given a formula ¢ of First-Order Logic, we say a variable v is bound if all occurrences of v occur in
subformulz® of ¢ of the forms vy or Vuy. If a formula in ¢ is not bound, we say it is free. Our

3 A formula is a subformula of another if it appears, in totality, without any breaks in the latter.
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sentences of First-Order Logic, given a vocabulary r are precisely the set of formula of First-Order Logic
that contain no free variables. This, is in contrast to Boolean Logics, where our sentences contained
no variables whatsoever.

For example, in the formula (x v y), x and y are free; butin the formula 3xVy(x v y), both x and y are
bound. Therefore, the latter is a sentence, but the former is not.

We can, in some sense, treat formulas like functions: if ¢ is a formula, whose free variables are among
Uy, 0y, ... U, then we can write ¢(vy,v,,...,v,) to signify this fact. Then, if ¢, ¢, ..., ¢, are constant
symbols, we can write ¢(¢;, 6, .. , ¢,) to obtain the sentence that results from replacing the free occur-
rences of the variable v, with the constant symbol ¢;. For example, if ¢(x, y) is (x V y), then ¢(¢;, ;) is

(4 Vo).

2.4.2 Truth in First-Order Logic

Definition 2.4.4. We denote First-Order Logic as £, . We shall see why in the next section.

Definition 2.4.5 (First-Order Logic). First-Order Logic (denoted £, ) is the function £, , that
returns the set of Sentences of First-Order Logic, given a vocabulary 7 together with a relatlon e
between structures and £,  -sentences, which is defined, inductively, as follows (for a vocabulary 7, 2

L, ., (7)-sentence ¢, and a 7 structure Ne):

for ¢ = 1, then M e @5

* for atomic (excluding L) ¢, then M =, @ if and only if uy (8) = 15

for ¢ of the form 7y, then M =, gifandonlyif M ¥, ¢

forgof theformyr A y, thenM =, gifandonlyif M, yandME, x; and

for ¢ of the form vy (v), then M &=, gifand only if ML (Dom (M); m) &, ¥ (c), for some

constant ¢ not in 7 and some interpretation of ¢ in the {c}-structure (Dom(9t); m).

For example, if 7 = {-, <, 1}, the vocabulary of Groups, and we let M denote the 7-structure (Z; +, <

,0) (the additive Group with the usual ordering on the integers). Then, we will consider whether
M, Va((x1) = x).
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M e Va((x,1) = x)
= M e —3dx(-(x, 1) = x)
= M e, Ax(-(x, 1) = x)
< there’s no m € Dom (M) and constant ¢ ¢ 7, with Wi U (M5 m2) =, A(-(c, 1) = ¢)
< there’s no m € Dom () and constant ¢ ¢ 7, with M u (I m) e, (-(c, 1) = ¢)
< for any m € Dom(9) and constant ¢ ¢ 7, N u (N; m) e (-(c, 1) = ¢)
« for any m € Dom (M) and constant ¢ € 7, uy gim ((6; 1) = ¢) =1
< forany m € Dom (M) and constant ¢ & 7, | (M) (-(c, 1)) = wp, (M) ()
and constant ¢ € 7, sy anm) () i) (€ Auagm (1) = tnum) ()

< for any m € Dom PALs and constant ¢ &7, limuwﬁ;m) (C) + lﬂ]ﬁu(i}}f;m}(l) =m

~— O~ ~— ~ ~ ~

(

(
< for any m € Dom(IM

(

(

< forany m € Dom(IN) and constant ¢ ¢ 7, m + 0 = m,

which is clearly true, and so M =, Vx(:(x,1) = x).

We must now verify that First-Order Logic is indeed a Logic.

Theorem 2.4.6. First-Order Logic is a Logtc.

Sketch of proof-
* Clearly, if 7 € o, then Lw)w(f) c Lw’w(a), by our definition;

e if IN L ¢, then, by our definition, I is a 7-structure, for some vocabulary 7, and ¢ €
L, (7); thatis, ¢ € £, (Vocab(IN));

W,

* by our inductive definition of satisfaction, it can be seen that the truth of a sentence depends,
fundamentally, only on the truth of the atomic sentences (that is, it is truth-functional), and
atomic sentences are preserved by isomorphism (that is, if 9t = 9, then wy (@) = uy(¢)) — and
so it can be proved, inductively, that the isomorphism property holds;

* again, the reduct property follows by our inductive definition: it M =, ¢,and gisal, ,(7)-
sentence then ¢ depends only and fully on £, ,(7)-atomic sentences, which are described by
the 7-reduct of 9N, and so the reduct property follows;

* the renaming property also immediately follows from the inductive definitions: the required
sentence is just the result of applying the renaming to the original sentence.

An interested reader can feel free to work out the intricacies.

2.4.3 Orthodox Logics

In this section, we shall introduce the notion of “Orthodox Logic”, of which First-Order Logic one.
Orthodox Logics are the main interest of study in Abstract Model Theory (well, really, “Regular Lo-
gics” are, but these have slightly more stringent conditions that we shall not go into — all Regular
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Logics are Orthodox Logics). Lindstrom’s Theorem, the highlight of this project, is also about Or-
thodox Logics. Boolean Logics are not, in general, Orthodox, and so in the next section, we shall
introduce a class of Logics extending First-Order Logic, which are Orthodox. The properties com-
prising the definition of “Orthodox Logic”, are taken from [Bar16, pp. 29-30]. The theorems in this
section exist in “Mathematical Folklore”, but the proofs are original.

Here, then, is what we mean when we say a Logic is “Orthodox”:
Y g

Definition 2.4.7 (Orthodox Logic). Let £ be a Logic. We say that £ is an Orthodox Logic if and
only if £ has the following properties:

* (dAtom Property) for all vocabularies 7, and all atomic ¢ € £, ,(7), there is a sentence ¢ € L(7)
such that for any z-structure I,

MeE, v ifandonlyif M ko $

* (Negation Property) for all vocabularies 7, and all ¢ € £(7), there is a sentence ¥ € £(7) such
that, for any z-structure I,

M e, v ifandonlyif I ¥, ¢

* (Conjunction Property) for all vocabularies 7, and all ¢, ¥ € £(7), there is a sentence y € £(7)
such that, for any 7-structure M,

MeE, y ifandonlyit IME, pand M, ¢; and

* (Particularisation Property) for all vocabularies 7, any ¢ € Const(7), and any ¢ € £(7), there is
asentence ¥ € L(7 \ {c}) such that, for any (7 \ {c})-structure M,

M e, v ifandonlyif M u (Dom(M);m) =, ¢,

for some m € Dom ().

If a Logic has both the Negation Property and the Conjunction Property, we say that it has the Boolean
Property. 1f a Logic has the Negation Property, then we use =1¢ to represent the sentence ¥ in the
corresponding clause above. If a Logic has the Conjunction Property, then we use ¢ A ¥ to represent
the sentence y in the corresponding clause above. If a Logic has the Particularisation Property, then
we use 3¢cg to represent the sentence ¥ in the corresponding clause above.

We can see that First-Order Logic is an Orthodox Logic quite easily:

Theorem 2.4.8. First-Order Logic is an Orthodox Logic.

Proof:
* The Atom Property immediately follows, by definition.

* Let7beavocabulary,andlet ¢ € £, ,(7), then note that ¢ € £, ,(7) and, for any 7-structure
n,
M, ¢ ifandonlyif M, g,

by definition. This establishes the Negation Property.
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* The proof of the Conjunction Property is similar to that of the Negation Property.

* Let 7 be a vocabulary, and let ¢ € £, (), if there are no constant symbols in 7, we are done,
so assume that ¢ € Const(7). If ¢ € £, (7 \ {c}), we are also done, and so we assume that
¢ & L,,(7\ {c}). Then, denote, by ¢, the result of replacing all occurrences of ¢ in ¢ by
v, a variable which does not appear anywhere in ¢. Then, define ¢ to be E|v¢'. Then, for any
(7 \ {c})-structure M, we have

Me, y ifandonlyif thereissomez € Dom(IM) such that M u (M m) =, ¢'(m),

which, obviously, happens if and only if 90t Li (Dom (M); m) &, ¢, for some m € Dom(IMN).
Hence, First-Order Logic has the Particularisation Property. ’

We will implicitly use this Theorem throughout, without making reference to it.

Just as we defined disjunction and implication as abbreviations in First-Order Logic, we can do the
same in Logics with the Boolean Property, and, moreover, they will work as expected.

Theorem 2.4.9. Let L be a Logic with the Boolean Property, let v be a vocabulary, and let ¢ and  be
sentences of L(7). Then, if we define ¢ v ¢ = =(=d A ), we see that, for any t-structure N,

Me, ovy  ifandonlyif Me, porNe, v

If we define § —  := ¢ V o, we see that, for any t-structure I,

Me, ¢ =y  ifandonlyif Me, ¢impliesIN =, .

Proof:

Me, ovy o M, (¢ AY)
= M, Ay
= M, g or M, y
o Me, porME, y.

And, similarly,

WMep =y oMM, vy
o Me, porMeE, v
oMy, pgorMe, v
o M =, ¢ implies M =, .

Henceforth, we shall use the abbreviations “¢ v ¥” and “¢ — ¢”. Moreover, it can be checked by
the reader, that if we define ¢ < ¢ = (¢ — ¥) A (¥ — ¢), then this also acts as expected: it is
satisfied if and only if ¢ and ¢ both are satisfied, or are both not satisfied. And, so we shall employ this
abbreviation also. It can also be verified, that if we define Vog := =3v=¢, that it acts as expected also.
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Thus, we shall make use of this abbreviation too. We will use these abbreviations without reference
to the above theorem.

We can see that no Boolean Logic is Orthodox. If a Boolean Logic has the Atom Property and the
Particularisation Property, then it cannot have the Particularisation Property, for Boolean Logics, as
we have defined them, can only talk about named objects of a structure, never about any arbitrary
object of the structure.

We can also have Boolean Logics that do not have the Boolean Property (or, indeed, that do not have
Atom Property). For example, our Logic &, , , from earlier. This does not have the Atom Property,
because it has no true sentences; and does not have the Negation Property (a fortiori, the Boolean
Property) for the same reason. It does, however, have the conjunction property, as no sentence is ever
modelled by a structure.

Because 1 is not modelled by any structure, no matter the vocabulary, it follows that &, , < £, . We
can also, using Boolean Logics, define the fragment of First-Order Logic that contains no quantifiers.
This is known as Propositional Logic. We will not prove that this is the case, but it easy to see. Let B
be any non—degenerate4 Boolean Algebra. Set D := {7}, and let % be such that z(¢) = T. Then, for
any vocabulary 7, as every atomic sentence of £, (7) is an atomic sentence of B(z), with the excep-
tion of 1, it follows that Bp,, is Logically equivalent to the fragment of First-Order Logic without
quantifiers. And, consequently, By, , < £,, . Moreover, By, , necessarily has the Boolean Property
and the Atom Property.

In general, Abstract Model Theory is concerned with Orthodox Logics, and so henceforth, we shall
drop talk of Boolean Algebras, and in our next section, we shall see a new class of Orthodox Logics:
Infinitary Logics. Boolean Logics, however, are not without merit, they are used in the field Set The-
ory for the technique of forcing. In fact, the only Fields Medal for work in Mathematical Logic was
awarded to Paul Cohen in 1966, who proved that the Axiom of Choice and generalised continuum
hypothesis are independent of the ZF axioms of Set Theory, by considering Boolean Logics (although
not quite defined as we have done). For the reader, however, they can provide a rich class of (simple)
Logics to play around with.

So prevalent is First-Order Logic in Mathematics (and, in particular, model theory), that we have a
special name for when two structures agree on all First-Order sentences:

Definition 2.4.10 (Elementary Equivalence). Let7 beavocabulary. Let 9t and 9 be z-structures.
We say M and N are elementarily equivalent if for all ¢ € £, (7),

m k¢ ifand only if N E @
If 9t and M are elementarily equivalent, we write Mt = N.

Abstract Model Theory is the practice of comparing (Orthodox) Logics: whether that be by Logical
strength, properties, or general classifications; we will end with a general classification of First-Order
Logic, Lindstrom’s Theorem, by proving that it is the strongest Orthodox Logic to have certain prop-
erties.

But, now, let us meet some more Orthodox Logics, Infinitary Logics, which are stronger than First-
Order Logic. That is, we shall see that First-Order Logic is a Sublogic of each Infinitary Logic, and

4
Te,L#T.
°In Bp,y» we can simply replace any occurrence of L (that is, our First-Order symbol) with ¢ A —¢ for any sentence ¢).
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that each Infinitary Logic has at least one sentence ¢ (for some vocabulary 7) such that the set of
all z-structures in which ¢ is satisfied is different to any set of 7-structures satisfying any First-Order
sentence .

3 ORDINALS, CARDINALS, AND INFINITARY LoGIC

A pre-requisite of reading this project was that the reader had encountered the notion of “uncount-
ability”. In this section, we will show the full generalisation of “infinities”, and show that there are
even different sizes of “uncountable infinities”. We will first see an introduction to “ordinal num-
bers”, which are named after the linguistic concept of “ordinal” (English examples are: first, second,
third, €9.), which represent numbers associated with orderings. Then, we shall see an introduction
to “cardinal numbers”, which are named after the linguistic concept of “cardinal” (English examples
are: one, two three), which represent numbers associated with counting — or, more specifically, with
the size of collections. These two concepts are, in some sense, the foundational results of Set Theory, a
field of mathematics which studies structures that satisfy chosen axioms to represent sets, in the same
way that Group Theory is the field which studies structures that satisty the chosen axioms of groups.
Finally, we shall use these new concepts to define, and see some examples of, Infinitary Logics, which
are (proper) extensions of First-Order Logic.

The sections on Ordinals and Cardinals use definitions from (or, that are strongly based on those
given in) [Jec02] and [Kun13].

3.1 Ordinal Numbers

The Ordinal Numbers are generalisation of orderings. Just as we count 0, 1,2, ..., we may want to
continue counting after we have exhausted all the natural numbers. For example, we could have an
ordering, where we list all of the natural numbers, and then we list all of the natural numbers again,
but with a star after them:

0,1,2,3,..,07,1",2", ...

By considering ordinals, we can describe the positions of 07, 17, and so on, in the list: 0" is in the wth
position, while 0 is in the Oth position; and, in general, #” is in the(w + 7)th position.

But what if we had 3 copies, or 4 copies of the natural numbers in a sequence? Or what if we had
countably many copies, or uncountably many copies? Ordinals allow us to describe all of these situ-
ations.

Ordinals allow us to describe the location of the objects in all of these orders. The class of ordinals,
then, is well-ordered; that is, there is a total ordering such that every (non-empty) set of ordinals has a
least element. Moreover, every non-empty set of ordinals has a supremum.

The smallest ordinal is 0, and all of the natural numbers are ordinals. We define w to be the smallest
ordinal number bigger than all of the natural numbers. The next ordinal after w is denoted by w + 1,
after that, w + 2, and so on. The ordinal & has no immediate predecessors, and so is called a /imit
ordinal. If an ordinal has an immediate predecessor, it is called a successor ordinal.
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If 2 is an ordinal, then there is no ordinal between « and « + 1. If 2 is a limit ordinal, then it is defined
to be the supremum of all the preceding ordinals. So, w := sup{»n € N}.

We shall use ordinals to index elements of sets: for example, the set {x;; 7 < a} is a set which has
elements that have been indexed by the ordinal 2.

The smallest limit ordinal after w is defined as sup{w + #; #» < w} = w + » = 2w. Returning to our
first example, we can define our ordering

0,1,2,3,..,0%,17,...

as follows: let xv; be 7 if 7 < w, otherwise, let x; be 7", where 7 = @ + #; and, so our ordering would be
{x;; i < w}.

Using ordinals, we can now define cardinals, using the fact that any well-ordering is order-isomorphic
to a set of the form {&« < j; « is an ordinal}, for some ordinal j.

3.2 Cardinal Numbers
We can define the notion of cardinality as follows:

Given a set X, and, assuming the Axiom of Choice, we can well-order X, and so there is an ordinal «
such that we can write X as {x;; 7 < a}. The least such ordinal is what we call the cardinality of X
(and there must be a least one, as the ordinals are well-ordered).

Note, then, that every natural number is a cardinal. For infinite cardinalities, and assuming the Axiom
of Choice (which allows us to well-order the cardinals), we write N;, where 7 is an ordinal. So, 8, is the
smallest infinite cardinality (countably infinite), and N, is the smallest uncountable cardinality.

And, we can call a set X countable if and only if | X| < N, and uncountable otherwise.
Sometimes we write N, as w (or &) and N, as w;.

We are now ready to see Infinitary Logics.

3.3 Infinitary Logic

Infinitary Logics are a generalisation of First-Order Logic (and are obviously Orthodox — we shall not
prove this fact; we also shall not prove that they are Logics, as they are obviously so: we can easily
expand our proofs for First-Order Logic). Infinitary Logics allow for infinite conjunctions and dis-
junctions of formule, rather than our finite conjunctions and disjunctions in First-Order Logic. We
define an Infinitary Logic given a cardinal. This cardinal tells us how big of a conjunction or disjunc-
tion we can form. Later on, we shall see that Infinitary Logics are more powerful than First-Order
Logic, in that they can express more properties of structures (a notion that will be defined more expli-
citly later on).

We take our definition largely from [Viill, pp. 157-8]. We write £, , for the Infinitary Logic which
allows conjunctions and disjunctions of less than size x, for an infinite ordinal ¥ > w. This is why we
write £, , for First-Order Logic, because we are only allowed conjunctions and disjunctions of size
less than w = Ny; i.e., finite conjunctions and disjunctions.

We will now define our formulz and sentences; our terms and atomic formul are the same as in

L

w,0*°
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Definition 3.3.1. Letx > N, be a cardinal, and 7 a vocabulary. Then, the formule of L, , given the
vocabulary = is the smallest set containing all of the formule of First-Order Logic (given 7) as well as:

* if X is a set of £, (7)-formulz of cardinality less than «, then /\ isa L, ,(7)-formula;

peX ¢
and

* if Xisaset of £, (7)-formule of cardinality less than x, then \/ sex gisa L, (7)-formula.

We can define free and bound variables as in First-Order Logic, and, just like in First-Order Logic, a

L, ,(7)-sentence is a £, (7)-formula with no free variables.

We can now give our definition of satisfaction in Infinitary Logics.

Definition 3.3.2. Given acardinalx > N, the Infinitary Logic £, , is the function £, ,, that returns
the set of sentences of the Infinitary Logic £, ,, given a vocabulary 7, together with the relation Fr
between structures and £, -sentences, which is defined, inductively, in the same way as First- Order
Logic (for a vocabulary 7, a Lk,w—sentence ¢ and a 7-structure 1), but with the following additional
cases:

* if ¢ is of the form \/1//€X ¥, then M Fr @ if and only if, for some ¥ € X, M ke Y and

* if ¢ is of the form /\ then 9 ke @ if and only if, for every ¥ € X, IN k¥

yeX ‘k’

Assuming the Axiom of Choice, consider 8; (which we shall call »; for now), the first uncountable
cardinal, and the first cardinal after N; we will consider the logic Lwl, »» Which allows for countably-
infinite conjunctions and disjunctions. Consider 7 = {-, <, 1}, the language of Ordered Groups, and
consider the z-structure (Z; +, <, 0) (the additive Group with the usual ordering of integers), which
we shall denote . Define X, a set of £, ,(7)-formule to be the set, X := {x;; 0 <7 < w}, where

each x; is defined as:
7 + 1 times

Define ¢ := Iy(=(y = 1) A \/ vex ¥(y)); we will consider whether Mt =, ¢.

w],0

m Fe @
if and only if

exists 72 € Dom(M) with Mu(Dom(M); m) =, (c = 1) and Mu(Dom (M \/ ¥(c)s
L Lo vex

for some constant ¢ ¢ 7, which happens if and only if, for some ¥ € X,

N U (Dom(M);m) £,  —(c=1) and M u (Dom(M); m) =, ¥ (c),

w1,% w1,

which clearly does not happen, as the only element of the domain satisfying any ¢ in X is the identity,
but we must choose a non-identity object; hence,

m #Lwl,w $.
It can easily be seen that Infinitary Logics are indeed Logics, and, more specifically, are Orthodox

Logics: our arguments for First-Order Logic can easily be extended. It is also easy to see that, for each
cardinal x > N, L, < L, just choose the corresponding sentence of L,
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One final note on this section, the second cardinal; i.e., the ‘@’ in °L, ,’ represents the maximum al-
lowed length of a sequence of quantifiers: in our definition, Infinitary Logics, and First-Order Logic
only allow finitely many quantifiers in a row in a sentence. However, we could, if desired allow infin-
itely many, for different cardinalities.

In the next section, we shall see some properties of First-Order Logic, that are of interest. We shall also
examine whether Infinitary Logics share these properties.

4 PROPERTIES OF LogGIcs

Before we continue, we shall quickly meet two definitions, which we shall use frequently from here
on.

Definition 4.0.1. Let £ be a Logic, and 7 a vocabulary. We say that a sentence ¢ € L(7) is satisfiable
if and only if there exists a 7-structure I such that

M=, ¢
If ¢ is not satisfiable, we say that ¢ is unsatisfiable.
We can generalise Definition 4.0.1, to deal with satisfiability of sets.

Definition 4.0.2. We say that a set of sentences X < £(7) is satisfiable if and only if there exists a
7-structure I such that, for each ¢ € X,

M=, ¢
And, if X is not satisfiable, we say that X is unsatisfiable.

We are now ready to proceed, and in this section, we shall engage more with Abstract Model Theory:
we will define some properties of Logics, and prove that First-Order Logic satisfies these properties.
The first is Compactness, which tells us that to prove that a set of sentences of a given Logic (given
a vocabulary) is satisfiable, we only need to prove that every finite subset of the set is satisfiable. The
second is the Léwenheim-Skolem-Tarski Property, which tells us that if a sentence of a given Logic
¢ (given a vocabulary 7) is true in a 7-structure with an infinite domain, then it is possible to find a
7-structure whose domain has cardinality « (for any infinite cardinal x) and such that ¢ is also true
(according to the Logic in question) in that 7-structure.

A possible project, then, in Abstract Model Theory, is to see which Logics have these properties, and
perhaps, even prove a general statement providing sufficient and necessary conditions for Logics to
have these properties.

We shall undertake a slightly different project: we shall see that Lindstrém’s Theorem characterises
First-Order Logic as the strongest Logic (in terms of expressibility; which is defined in the next sec-
tion) which has both the Compactness and Lowenheim-Skolem-Tarski Properties (in fact, we prove
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a stronger result, as we prove it for weaker versions of Compactness and Léwenheim-Skolem-Tarski,
both of which we define in this section).

We shall also examine Infinitary Logics in this section, in relation to Compactness and Léwenheim-
Skolem-Tarski. I take the definitions in this section from [Ebb16, pp. 31-32], and proofs are attrib-
uted as appropriate.

4.1 Compactness

Definition 4.1.1. Let £ be a logic. We say £ has the Compactness Property if and only if for any
vocabulary 7 we have that a set of sentences X ¢ .£(7) is satisfiable if and only if every finite subset of
X is satisfiable.

Theorem 4.1.2. First-Order Logic has the Compactness Property.

Proof: adapted from PY4612 Advanced Logic. We assume the Soundness and Completeness The-
orem of First-Order Logic(’, which says that there is a proof-system for First-Order Logic so that
X k, ¢ if and only if there is a finite proof from X to ¢ (where the details of “finite proof” are
omitted here). So, ¢ can be proved in our finite proof system, from X if and only if it can be proved
from a finite subset of X. It then follows, by Soundness and Completeness, that there exists a finite
subset X' of X such that X kg, ¢ifand only if X' ke

By our definition of satisfiability, we know that Y < £ (7) is satisfiable if and only if there is a 7-
structure M such that M =, Y, but then, itis clear that Y #, 1,as N ¥, 1, by definition. So,

by the above, there is a finite subset X' " of X such that X B L if and only it X ' Fp L Le., thereis

a finite subset X' of X such that X is satisfiable if and only if X " is satisfiable. 2 fortiort, if every finite
subset of X is satisfiable, then so is X.

Clearly, X o X' for any finite subset X "of X, and so if X is satisfiable, so is every finite subset of
X. ’ O

We can define more fine-grained versions of Compactness:

Definition 4.1.3. Let £ bealogic. Given a cardinal x, we say that £ has the x-Compactness Property it
and only if for any vocabulary 7, we have that a set of sentences X < £(7), where | X| < «, is satisfiable
if and only if every finite subset of X is satisfiable.

Sometimes, instead of saying N,-Compactness, we say »-Compactness, or Countable Compactness.
Itis clear thata Logic has the Compactness Property if and only if, for any infinite cardinal x, the given
Logic has the x-Compactness Property. And, so we deduce that First-Order Logic is x-Compact (that
is, has the x-Compactness Property) for any infinite cardinal «.

A natural question one might ask, given our new definition, from the perspective of an Abstract
Model Theorist, is whether it is true that every Orthodox Logic has the Compactness Property (or
x-Compactness for some cardinal x). We can show that itis not the case that every Orthodox Logic has

®See PY4612 Advanced Logic for a proof.
"This notation means that if X U {#} < L,,,(7), then in every 7-structure MM such that M =, X, we also have
Me, ¢ '
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the w-Compactness Property (and consequently the Compactness Property), with a counter-example:
Infinitary Logic. We can see that w-Compactness fails for any Infinitary Logic.

Theorem 4.1.4 ([Hod97, p. 127]). No Infinitary Logic has the w-Compactness Property.

Proof: letx be such thatx > 8, andlet 7 = {¢;; 0 <7 < w}, where each ¢; is a constant symbol. Then,
consider X ¢ £, (7) defined as

X ={(q = ), (¢ = 6), (¢ = 63) ...}

If we add another sentence to X to obtain X' = X U V.o = 61> then we can see that any
finite subset I" of X is satisfiable: define C := {¢;; ¢, # ¢, and ¢, appears in a sentence of '}, then any
7-structure which interprets ¢, to a fixed element of the domain (say 72) and maps each ¢, € Ctoa
distinct element of the domain (excluding 72) satisfies I'; and this is possible if the structure has an
infinite domain, so we conclude that every finite subset of X " is satisfiable.

But, we can see that X’ is obviously not satisfiable, hence w-Compactness for .£, ,, must fail, for oth-
. ! . .
erwise, we would be able to conclude that X is satisfiable. O

It follows that no Infinitary Logic has the Compactness Property. This is interesting, because it shows
us that just by adding infinitely long disjunctions to First-Order Logic, we would have to give up the
Compactness Property.

4.2 Lowenheim-Skolem-Tarski

The Compactness Property tells us something about sets of sentences in a Logic; our next result tells
us something about the structures, that satisfy certain sentences, themselves (although this is still in
regards to the Logic, for satisfaction is Logic-relative).

Definition 4.2.1. Let £ be a Logic, and x an infinite cardinal. We say that £ has the x-Downward-
Lowenheim-Skolem-Tarski Property if and only if for any (countable®) vocabulary 7, we have that for
any ¢ € L(7) that if there exists a 7-structure Mt such that M =, ¢ and |[Dom(IMN)| = «, then there is
a7-structure N such that N =, ¢, and ;) < |Dom(MN)| < «.

Definition 4.2.2. Let £ be a Logic, and « an infinite cardinal. We say that £ has the x-Upward-
Lowenheim-Skolem-Tarski Property if and only if for any (countable’) vocabulary 7, we have that for
any ¢ € £(7) thatif there exists a z-structure I such that M &, ¢ and N; < |[Dom(M)| < «, then
there is a 7-structure N such that N =, ¢, and |Dom(M)| = «.

Again, we have generalised versions of these definitions:

Definition 4.2.3. Let £ be a Logic. Then, we say that £ has the Downward-Liwenheim-Skolem-
Tarski Property it and only if, for all infinite cardinals x, £ has the xk-Downward-Léwenheim-Skolem-
Tarski Property.

80ur definition relies heavily on the vocabulary being countable.
9Again, this is important.
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Definition 4.2.4. Let £ beaLogic. Then, we say that £ has the Upward-Lowenheim-Skolem-Tarsk:
Property if and only if, for all infinite cardinals x, £ has the x-Upward-Léwenheim-Skolem-Tarski
Property.

Theorem 4.2.5. First-Order Logic has the Downward Lowenbeim-Skolem-Tarski Property.

Sketch of proof: see PY4612 Advanced Logic, where this is proved by means of a construction used in
the proof of Completeness. In fact, what is proved is that First-Order Logic has the 8,-Downward-
Léwenheim-Skolem-Tarski Property. But, this (obviously) implies the stronger claim that First-Order
Logic has the Downward-Léwenheim-Skolem-Tarski Property. O

And, so, forany infinite cardinal , First-Order Logic has the x-Downward-Léwenheim-Skolem-Tarski
Property. It is also true that First-Order Logic has the Upward-Lowenheim-Skolem-Tarski Prop-
erty.

Theorem 4.2.6. First-Order Logic has the Upward-Lowenbeim-Skolem-Tarski Property.

Sketch of proof: (based on the proof given in [Hod97, p. 127]). Let x be an infinite cardinal, and 7 a
(countable) vocabulary. Let ¢ € £, ,(7) be such that there exists a 7-structure I with M TR
and N, < [Dom(M)| < «.

We expand the vocabulary 7 be adding x-“many” new constants to 7, and call the resulting vocabulary
o: thatis, 7 ¢ o and |Const(c \ 7)| = x. Note that ¢ is not necessarily countable (¢ is countable if

and only if x = N).

Then, we define a new set of sentences X < £, ,(7):

X :={(q =6); q #¢and ¢, € Const(s \ 7)}.

We then show that the set of £, , (7)-sentences {#} U X is satisfiable, using the Compactness Property
of First-Order Logic. That is, we show that every finite subset of {¢} U X is satisfiable, and then it
follows that the entire set is satisfiable.

To see that every finite subset is satisfiable, note that any finite subset X " of X contains at most finitely
many constant symbols, then, we can expand our 7-structure I into a o-structure, by interpreting
each of the finitely many constant symbols in X" as distinct elements, and all the (infinitely many)
others that do not appear in our finite subset X' of X to all be the same element of Dom (9t). Clearly,
the expanded structure models ¢ (as it did originally), and models X', by construction. Hence, every
finite subset of {¢} U X is satisfiable, and thus there is a o-structure 9 such that N =,  {p} U X, by
the Compactness Property of First-Order Logic. -

It then follows that the z-reduct, N | 7 of N is a 7-structure, with |Dom(N | 7)| = «, as Dom(N) =
Dom(M | 7), and because N = X, which clearly forces a domain of at least x elements. Moreover,
because of the reduct property of Logics, 9t | 7 Fp, pas N ke b by construction.

Hence, 9t | 7 satisfies the requirements of the theorem. OJ

And hence, First-Order Logic has both properties.
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Corollary 4.2.7. First-Order Logic has both the Downward and the Upward Lowenheim-Skolem-
Tarski Properties.

Proof: This follows immediately from Theorem 4.2.5 and Theorem 4.2.6. O

This tells us that if a sentence ¢ of £, ,(7) is true in some 7-structure with an infinite domain, then
there exists a 7-structure, for any infinite cardinal «, such that ¢ is true in it, and it has a domain with
cardinality x.

Again, returning to comparisons with Infinitary Logic, there are versions of the Downward Léwenheim-
Skolem-Tarski Property that hold for Infinitary Logics; unfortunately, we would need to do alot more
work with Infinitary Logics to even state, let alone prove such a result. Details can be found in [Mar16,
pp- 11-12].

We can, however, show that the Upward Léwenheim-Skolem-Tarski Theorem fails for Infinitary Lo-
gics. First, we show that there is a satisfiable sentence (in a specific vocabulary) of Infinitary Logics
that forces any model have a countably-infinite domain.

Lemma 4.2.8. Let L be an Infinitary Logic, and t be a vocabulary, consisting of countably-infinitely
many constant symbols. Then there is a satisfiable sentence Y € L(t) such that if W is a T-structure, then
M =, ¢ implies | Dom(M)| = N,

Proof: let 7 be a vocabulary consisting of countably-infinitely many constant symbols ¢;,0 < 7 < w.

Then define
p=Vx(\/ (x=c))rn N\ D,

O<i<w O<i<w

where each D is defined in the following way:

D= A g=g).

0<j<wsj#i

The left conjunct (of @) expresses the fact that every element of the domain is interpreted onto by one
of the constant symbols of 7, and the right conjunct (of ¢) expresses the fact that no two constant
symbols are interpreted as the same element of the domain. Hence, any 7-structure that satisfies ¢
is such that the interpretation of all the constant symbols map to distinct elements of the domain,
and every element of the domain is interpreted by some constant symbol of 7, of which there are
countably-infinite.

This is clearly a possible structure, and so there are models of ¢, and, from the above, the domain of
any model of ¢ must be countably-infinite. [ |

Now, since the domain of any model of ¢ must be countably-infinite, we must also have that Upward-
Lowenheim-Skolem-Tarski does not hold for any Infinitary Logic, as it would imply that we could
find models of ¢ with cardinality greater than 8, but we cannot. In particular, then, for any cardinal
x > N, Infinitary Logics do not have the x-Upward-Lowenheim-Skolem-Tarski Property.
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s EXPRESSIBILITY AND ISOMORPHISMS

This section collates many results which will be useful in our proof of Lindstrém’s Theorem, in the
next section. In the first subsection, we also introduce the concept of “expressibility”: we say that a
property of structures is expressible in a logic £ (given a vocabulary 7) if and only if there is a sentence
of £(7) which is modelled in only and all those 7-structures with the property in question. For ex-
ample, the property of “being a structure” is expressible in First-Order Logic (given any vocabulary),
because 1L is true in every structure, and every structure (and only structures) are structures. An-
other example, given the vocabulary of Groups 7, the property of “being a Group” is expressible in
First-Order Logic, because any z-structure satisfying the Group axioms (as standardly formalised in
First-Order Logic) is a Group (and only such structures are Groups). In the second subsection, we
prove some results about structures, isomorphisms, and partial isomorphisms, which will be useful in
our final section on Lindstrom’s Theorem.

5.1 Expressibility

Having seen some properties that are expressible in First-Order Logic, we can now show that some
properties are not expressible. We can use the Compactness and Léwenheim-Skolem-Tarski Properties
of First-Order Logic to this end. Our examples here shall be about cardinality.

Our first example of a property of structures that is inexpressible in First-Order Logic is that of “being
afinite structure”. We shall show that this is in expressible, by using the Compactness Property.

Theorem 5.1.1. There is no vocabulary v such that there exists a ¢ € L, ,(7) such that M =, ¢ if
and only if | Dom(M) | < Ry."°

Proof: suppose otherwise, that ¢ is such a sentence for some vocabulary 7. Then consider the following
set X € L, (7):

X = {¢, 73y Vx(y; = x), "y InVa(=(y 2 ») A () =2V oy =x)),..}

So that the first sentence after ¢ expresses the fact that there is not precisely one thing in the domain,
the second sentence after ¢ expresses the fact that there is not precisely two things in the domain, and
so on.

We can see that any finite subset of X is satisfiable: take any z-structure which has a finite domain
bigger than which any sentence of the finite subset prevents. Hence, by the Compactness Property
(Countable Compactness, in particular), we see that all of X is satisfiable: let 9t be such a z-structure.
But, as every sentence in X must be true in I, which means that [Dom(9t)| # 1, |[Dom(M)| # 2,
&9, by each sentence of X that is not ¢. But, as ¢ also is true in I, by construction, the domain of
I is finite, but there is no possible choice for this (remember, we disallow structures with an empty
domain), hence we must conclude that no such sentence ¢ can exist. 0

However, when we move to Infinitary Logics, we can express such a property of structures (and, in
fact, there is such a sentence, irregardless of the vocabulary).

Theorem 5.1.2. If L isan Infinitary Logic, and T a vocabulary, then there is a sentence y € L(7) such
that if W is a t-structure, then W &, ¥ if and only if | Dom(IM)| < N,

19T his is an example from PY4612.
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Proof: let ¢ be
v= VG

O<i<w

where each C; expresses that there are precisely 7 elements (these are the un-negated versions of the
sentences in X in Theorem 5.1.1, other than ¢, of course).

Clearly, then, this expresses that there is precisely 1 element in the domain, or there are precisely 2
elements in the domain, or 3, and so on.

Hence, there must be a finite number of elements in the domain of any z-structure satisfying . W

This is one case in which we can say that Infinitary Logics are more expressive than First-Order Lo-
gic.

We know, from our proofs of Theorem 5.1.1 and Theorem 5.1.2 that First-Order Logic can express
that a structure has precisely 7 elements, for any finite z > 0. However, we know, from Theorem 5.1.1
that we cannot express that a structure is finite, without reference to specific cardinality, in First-Order
Logic. As First-Order Logic is an Orthodox Logic, it follows that there is no sentence expressing that
a structure is not-finite either (for if there was, then the negation of “not-finite” would be “finite”).
That s, there is no sentence true in only and all those structure with an infinite domain. We shall see,
in our next example that, in First-Order Logic, we also cannot express that the domain of the structure
is countably infinite (or in fact, that it has cardinality x for any infinite cardinal x). And, as First-Order
Logic is an Orthodox Logic, we also cannot express the fact that a structure does not have cardinality
x for any infinite cardinal .

Theorem 5.1.3. letk be an infinite cardinal, andt a vocabulary. Then thereis nosentence $ € L, ,(7)
such that, for any t-structure N,

Me, ¢ ifandonlyif |Dom(M)| = x.

Proof: Let x be an infinite cardinal, and 7 a vocabulary. Then, if ¢ € £, ,(7) were to be such that for
any 7-structure I,

M, ¢ ifandonlyif [Dom(M)| =rx,

then, as there certainly are 7-structures with domain of size «, any of these structures must satisfy
¢. But then, by the Léwenheim-Skolem-Tarski Property of First-Order Logic, we can find another
structure N, with a domain of cardinality A, where A # xand 4 > 8, and N =, @, contradicting
our assumption. ~ [ |

Seeing what properties a Logic can express (given certain vocabularies) is one method of categorising
them (although a very coarse method), and so, this is, in some sense, a part of Abstract Model The-
ory.

5.1.1 Abstract Model Theory

In this part, we will do some “real Abstract Model Theory”, by showing facts about all Orthodox
Logics (which are typically the subject of study in Abstract Model Theory) that extend First-Order
Logic. The proofs, and their statements, in this part are all reconstructed from the proof of Lind-
strom’s Theorem given in [Flul6] (many of which are implicitly assumed) — this continues until part
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5.2.1. We begin by showing that if there is a sentence that First-Order Logic cannot express in an Or-
thodox Logic, then there must be at least one structure in which that sentence is true. To do that, we
begin by defining these notions formally.

Definition 5.1.4. Let £ > £, , beaLogic, 7 a vocabulary, and ¢ € L(7). We say y is not equivalent
to any First-Order sentence if there is no ¢ € £, , (7), such that for all z-structures I,
Me, v ifandonlyif Mk, 4.

Now, we will show that any sentence of an Orthodox Logic, which is strictly stronger than First-Order
Logic, that is not equivalent to a First-Order sentence, must be satisfiable.

Theorem 5.1.5. Let L > L, , be an Orthodox Logic, and T a vocabulary. Then, if ¢ € L(7) is not
equivalent to any First-Order sentence, then  is satisfiable.

Proof: suppose otherwise: that ¢ is not satisfiable. Then, for every 7-structure I, we have
Mg ¢
however, we also have

Mo, L.

Hence, for every z-structure I,
M e, v ifandonlyif M, L,

which contradicts our assumption that # was not equivalent to any First-Order sentence. Thus, we
conclude that y is satisfiable. [ |

We have now done our first bit of Abstract Model Theory: we have proved a result about all Orthodox
Logics stronger than First-Order Logic (and in fact all those sentences which make it stronger than
First-Order Logic). This is a very general statement, and so is truly part of Abstract Model Theory.
We shall continue in this way, proving some results about these kinds of logic, in preparation for the
big “foundational” result of Abstract Model Theory: Lindstrém’s Theorem.

Theorem 5.1.6. Let [ > Lo be an Orthodox Logic, T a vocabulary, ¥ € L(7) be not equivalent to any
First-Order sentence, and ¢ € L, (7). Then, either A ¢ or A @ is not equivalent to a First-Order
sentence.

Proof: suppose ¥ A ¢ is equivalent to y € £, , (7). Then, for each z-structure I,
Me, yAg ifandonlyit ME, y.
Suppose also that ¥ A =g is equivalent to y' € L, (7). So, for each 7-structure N,
N,y Ag ifandonlyif N,y
Let O be a z-structure. Then, by how disjunction and conjunction behave in Orthodox Logics, we

have

Ok, yvy =90r ¢



5 EXPRESSIBILITY AND ISOMORPHISMS 31

Suppose that © =, ¢. Then, as ¢ € £, ,(7), we must have © =, ¢ or O &, ~¢. In either case, we
can conclude O =, y V ', as £ is an Orthodox Logic.

Thus, we have shown that ¢ is equivalent to y v ;(/ € L,, (7), which is a contradiction. So, we
conclude that we cannot have both ¢ A ¢ and ¢ A =1¢ equivalent to a First-Order sentence. [ |

In Theorem 5.1.6, we cannot remove the ‘or’ condition. That is, we cannot replace the final sentence
with “Then, ¢ A ¢ is not equivalent to a First-Order sentence’. To see this, note that after one ap-
plication, of Theorem 5.1.6, we have a sentence ¢ A ¢ such that it is not equivalent to a First-Order
sentence, but then, by taking ¢' := =g, we could apply Theorem 5.1.6 once again to conclude that
Y APA ¢' is not equivalent to any First-Order sentence. However, it is obvious that it can never be
satisfied, contradicting the fact that if a sentence is not equivalent to any First-Order sentence, it is
satisfiable (Theorem 5.1.5).

Also, we cannot replace the final sentence with “Then, ¥ A =¢ is not equivalent to a First-Order sen-
tence’, as we can run the same argument with ‘¢’ replaced by ‘—¢’. However, we can glean a little
more information: if the First-Order sentence does not ‘interfere’ with the non-First-Order sentence,
then we can conclude that the First-Order sentence also does not ‘interfere’ with the negation of the
non-First-Order sentence. This is proved next.

Theorem 5.1.7. Let v be a vocabulary, and let £ > L, , be an Orthodox Logic. Then, let ¢ € L(7)
be not equivalent to any First-Order sentence, and ¢ € L, (7) be satisfiable. Then, if y A ¢ is not
equivalent to any First-Order sentence, nor is —y A @.

Proof: assume the contrary; so, there exists y € L, ,(7) such that for any z-structure I, we have
M =, Y A ¢ifand only if M =, y. Now, let I be an arbitrary z-structure. Then, if we have
M = ¢ Ay, we must have, as £ is Orthodox, M =, ¢ A 2(=y A @);ie, M =, ¥ A 4.

Suppose M &, ¥ A ¢, where M is a 7-structure. Then, we also have, as £ is Orthodox, M =, pA (¥ v
—|¢); ie, M Ep, @Ay,

Itis clear that ¢ A =y is a First-Order sentence, as both ¢ and =1y are. So, we have shown that ¢ A ¢ is
equivalent to a First-Order sentence. Hence, our assumption must be false. Thus, we conclude that
if ¥ A ¢ is not equivalent to any First-Order sentence, nor is =y A ¢. n

We can generalise Theorem 5.1.6.

Theorem 5.1.8. Let L > L, , be an Orthodox Logic, T a vocabulary, X < L(7) be satisfiable, and
¢ € L, ,(7) be satisfiable. Then, either X U {¢} or X U {@} is satisfiable.

Proof: suppose that X U {¢} is unsatisfiable. Then, choose a 7-structure It such that M =, ¢. We
can do this because we supposed that ¢ was satisfiable.

But, because we supposed that X' U {¢} was unsatisfiable, we must have that I #, X, as otherwise
X U {¢} would be satisfied by It.

As Mt was arbitrarily chosen, we can conclude that for any z-structures I,

it Me, ¢, then My, X.
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And, so, by contraposition,

= M &, ¢, asLis Orthodox.

But, if, for some 7-structure M, we have M =, X and M =, ¢, then we have shown that X U {-¢}
is satisfiable.

On the other hand, if we assume there is no z-structure M such that M =, X and M =, ¢ (ie.,
X U {~¢} is unsatisfiable), then because X is satisfiable, we have contradicted the claim that for any
r-structure I,

it Me, X, then ME, ¢

Hence, we must deny our assumption that X U {¢} is unsatisfiable. Thus, either X U {¢} or X U {-¢}
must be satisfiable. [ |

As with Theorem 5.1.6, we also cannot drop the ‘or’ condition in Theorem 5.1.8. It is for the same
reason, as we saw for Theorem 5.1.6. That is, we cannot replace the final sentence of the statement
of Theorem 5.1.8, by “Then, X U {¢} is satisfiable’. For, by one application of Theorem 5.1.8, we
conclude that X U {¢} is satisfiable. But, we could also use Theorem 5.1.8 to conclude that X U {¢} U
{—¢} is satisfiable. This is clearly false. Again, the same argument runs through with ‘¢’ replaced by

ﬂ¢.

We now have enough information about Orthodox Logics that extend First-Order Logic for Lind-
strom’s Theorem. But, before we can prove it, we need to see some more information about Iso-
morphisms, and the Back-and-Forth method.

5.2 Isomorphisms and the Back-and-Forth Method

Now, we shall see that in finite structures of a finite vocabulary, we can encode sufficient information
into a single First-Order sentence (of the relevant vocabulary) such that if any two structures (of the
relevant vocabulary) satisfy such a sentence, then they are isomorphic. We will conclude from this fact
that isomorphism and elementary equivalence are equal (in finite vocabularies and finite structures),
which we will use in our proof of Lindstrom’s Theorem. Following that, we will see a generalisa-
tion of “isomorphism”: “partial isomorphism”, and we shall see a useful technique in Model Theory,
called the Back-and-Forth method, which utilises partial isomorphisms, and is used to show that two

countably infinite structures are isomorphic.

Theorem 5.2.1. Let 7 be a finite vocabulary. If W is a t-structure, and Dom(IN) s finite, then there
isa sentence § € L, ,(7) such that W &, ¢ and for any r-structure %,

if Wy @, then =N
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Proof: denote the elements of Dom(IN) as {2, ..., m,}. Then, define

k
¢ = Jxcy - g ( /\ X; # XN

i#]
k
Va( \/ X =x)A
v
c= .X'l-/\
¢ € Const(7);
ta(€)=m,
Rx; - x,
R € Rely(7);
(5 )€t (R)
aRx; X
1 I
R € Rely(7);

(72 5ercsrmy ) 13 (R)

/\ f(xl'l,...,xl.l) = xj).
/. € Func,();
oy (f) (s m, )=x;

This is clearly a finite sentence, as 7 is finite, and so is the domain of . Hence, ¢ € £, (7).

Note that the first two lines encode the fact that the structure has precisely £ elements, the third line
encodes to which elements each constant symbol “picks out”, the fourth line encodes for which ele-
ments of the domain each relation holds for, the fifth encodes for which elements of the domain each
relation does not hold for, and the final line encodes to where each function maps, given any input-
tuple of elements of the domain. Clearly, these are all facts about I, and so M =, .

Furthermore, we can see that if 9t o ¢, then by the first two lines, the domain of 9t has the same car-
dinality as the domain of 9. Then, if we remove the existential quantifiers of ¢ to obtain a formula ¢,
with free variables x;, ..., 25, and we order Dom (M) so that Dom(N) = {ny, ..., 7.}, and ¥ (ny, ..., ),
then it is clear that m,; — #; is an isomorphism between the two structures. [

From this, we can conclude:

Corollary 5.2.2. Let 7 be a finite vocabulary. If W is a t-structure, with Dom(IN) finite, then for any
T-structure N, we have

M=N ifandonlyif NM=MN.

Proof: for the forward direction, let ¢ be as in Theorem 5.2.1, then Mt ke P if and only if ke b
but we know that 9t TR and so N k¢ Hence, 9t = .

For the backward direction, note that if M = N, then N and It agree on all the atomic sentences, and
so when inductively checking for the truth of a sentence of First-Order Logic, we know that all the
atomic sentences will agree, and so any sentence will agree. [ |

This tells us that for finite vocabularies and structures, isomorphisms and elementary equivalence are
equivalent. So, to show one, we can just show the other.

This does not hold true, in general, for structures with infinite domains (it is difficult to give examples
with the theory developed in this project).
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5.2.1 The Back-and-Forth Method

Finally, we shall introduce the notion of partial isomorphisms and introduce the Back-and-Forth
method, which is a method for demonstrating that there is an isomorphism between countably infin-
ite structures. This is the final piece of theory we need before going on to prove Lindstrém’s Theorem
in the next section.

The proofs and definitions in this section are edited from [Ebb16, pp. 53-58]. But, Cantor’s Theorem
is expanded from [Hod97, p. 79].

Definition 5.2.3 (Partial Isomorphism). Let 7 be a vocabulary, and 9t and M be z-structures.
Then, we say p is a partial isomorphism between I and N if and only if the following conditions
are satisfied:

* pisapartial function'! between Dom (%) and Dom(9N);

* pisdefined on only finitely many elements of Dom (M) (including none);
* pisinjective (thatis, p(x) = p(y) = x = y);

e for each ¢ € Const(7), if p(tgy(c)) is defined, then p(rgp(c)) = 19 (c)s

* foreach positive integer 7, each f € Func,(7), and each n-tuple (2, m,, ..., m,) such thateach
element of the tuple has a defined mapping under p,

Plean(f) (myymy, ... .m,)) = 1 (F) (p(my), p(my), .., p(m,,))s
and

e for each positive integer 7, each R € Rel,(7), and each n-tuple (m,, m,, ..., m,) such that each
element of the tuple has a defined mapping under p,

tap (R)mymy --m,,  ifand onlyif i (R)p(my)p(my) - p(m,).

Informally, a partial isomorphism from a z-structure I to a 7-structure N is an isomorphism (tech-
nically, a s-isomorphism, where o € 7), which disregards constants that do not appear in its domain,
from a subset of Dom () onto its own image (a subset of Dom(%t)).

Itis useful to note that the empty function is a partial isomorphism between any two structures.

Definition 5.2.4 (Partially Isomorphic Structures). Given a vocabulary 7, we say that two -
structures Mt and N are partially isomorphic if and only if there is a non-empty set / consisting of
partial isomorphisms between It and N, such that I satisfies both the back property and the forth

property:
* (Forth property) For each p € I and m € Dom(9), there exists a ¢ € I such that p is a

“subfunction” of 4'%, and g is defined on 7.

* (Back property) For each p € I and » € Dom(9t), there exists a ¢ €  such that p is a “subfunc-
tion” of g, and there is some 7 € Dom () such that g(m) is defined, and g(m) = ».

HA partial function is exactly like a function, except not every element of the domain has to have a defined image. And
it will be useful to note that the empty function (f : @ — @) is always a partial function, even when we expand the
domain and range.

2What we mean by this is that for all x such that p(x) is defined, ¢(x) is defined and p(x) = g(x).
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Given this definition, we can now show that any two countably-infinite partially isomorphic struc-
tures are isomorphic. In doing so, we will have demonstrated a technique for proving that two countably-
infinite structure are isomorphic. This is the Back-and-Forth technique. We shall explain it, in full,
and provide an example, after the next theorem.

Theorem 5.2.5. Let 7 be a vocabulary, and let W and N be partially isomorphic T-structures with
countably-infinite domains, then M = N.

Proof: enumerate (without repeats) Dom(IN) as 2, 74, ... and Dom(N) as 7, 7y, .... Then, let p, €
1. We will define a sequence of partial isomorphisms py, p;, ... such that each p;, is a “subfunction” of

pi+1 (and, consequently of each 2 for j > 7), by the following:
* if k+ 1is odd (and £ = 29), then, by the forth property, we can find a p; in 7 such that g is a

“subfunction” of gy, and p. is defined on 7,; and

e ifk+ 1iseven (and £ + 1 = 2¢), then, by the back property, we can find a p,_ in 7 such that p,
is a “subfunction” of g, , and there is some 7 € Dom(9R) such that gy, , () is defined, and

Pr+1 (7’}’1) =n.

We can use this sequence to induce a 7-isomorphism between 9t and I as follows: let p : Dom (M) —
Dom(M) be such that m +— p;(m), where 7 is the least natural number such that p;(m) is defined in
our sequence.

We will now show that this is indeed a z-isomorphism.

* To see injectivity, note that if p(x) = p(y), then we know that for some natural numbers 7 and
7> p:(x) = p;(9), and so, if, without loss of generality, 7 is the maximum of 7 and /, then we
know that p;(x) = pj(y) = p;(y), as we have a sequence of “subfunctions”, but, then as these
are partial isomorphisms, p; is injective, and so x = y.

* To see surjectivity, let z, € Dom(9), then, by construction, there exists some 72 € Dom (k)
such that p,,(m) = n,, and so we know that p(m) = #,, because the p;s are a sequence of
“subfunctions”.

* To see that “constants map to the corresponding constants”, note that at some point, we will
have met the interpretation of each constant symbol, as p is bijective, by the previous two bul-
let points, and when we do, we know that it maps to the interpretation of the corresponding
constant symbol, as each p; is a partial isomorphism.

* A similar argument can be applied for relations and functions.

The Back-and-Forth method, then is to use Theorem 5.2.5, by showing that two countably-infinite
structures are partially isomorphic.

For example, Cantor proved (although not using this method) that all countable dense linear order-
ings, without endpoints, are isomorphic. Note that all dense linear orderings are infinite, so countable
dense linear orderings are countably-infinite, and also note that the rationals are a countable dense lin-
ear ordering, without endpoints, so this theorem is saying that every countable dense linear ordering
is isomorphic to the rationals. We shall provide a proof using the Back-and-Forth method.
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Theorem 5.2.6 (Cantor). Letr v = {<}, and let W and N be -structures, which are also countable
dense linear orderings, without endpoints. Then, M = N.

Proof: we use the Back-and-Forth method, by showing that 9t and 9t are partially isomorphic, and
then we conclude the desired result by applying Theorem 5.2.5.

Let 7 be the set of partial isomorphisms between It and N. We know that the empty function is in 7
and so it is non-empty.

We will show that [ satisfies the forth property. So, let p € 7, and list the elements of Dom(9)t) on
which p is defined in a way such that 2, 19, (<) 72, 19y (<) - 29y (<) 7y, where £ is the total number of
elements on which p is defined (which is finite, by definition). Then, let 2 € Dom(9)t), then choose
n € Dom (M) such that:

o if m 19y (<) my, then 7 1 (<) p(my);
e if my, 19y (<) m, then p(m;) 19 (<) 25 and
* i m; 1y (<) 7 19n (<) 7,45 then p(m,) 1n (<) 70y (<) Py ).

We can justify that it is always possible to find such an 7, because 9 is a dense linear ordering, without
endpoints. It follows that if we let p/ be the same partial function as p, but also define p/ to be defined
on m so that p’ (m) = n, then ]J' is also, obviously, a partial isomorphism, by our choice of 7. Thus,
we see that 7 has the forth property.

We can use a very similar argument to demonstrate the back property. O

6 LINDSTROM’S THEOREM

We shall now see a proof of Lindstrom’s theorem. This is an important result in Abstract Model
Theory. The theorem gives a neat characterisation of the expressive power of First-Order Logic. It says
that if any Logic is at least as expressive as First-Order Logic, and satisfies both w-Compactness, and
has the 8 -Downward-Léwenheim-Skolem-Tarski Property, then that Logic must, in fact, be First-
Order Logic. Hence, we know that these properties characterise First-Order Logic, in the sense that
it is the most expressive Logic to have such properties.

Lindstrém’s Theorem, then, is the foundational result in Abstract Model Theory, because it charac-
terises, completely, First-Order Logic, which is our prime example of a Logic. So, as the field is about
characterising and comparing Logics, Lindstrém’s Theorem is a very nice result.

The proof proceeds in three steps. In the first step, we show that for w-Compact Orthodox Logics, at
least as strong as First-Order Logic, each sentence depends on at most finitely many symbols from the
vocabulary.

Then, we show that if we were to extend First-Order Logic with a new, previously inexpressible sen-
tence, and if the resulting Logic were still to have the Countable Compactness Property and the ;-
Downward-Léwenheim-Skolem-Tarski Property (and still be Orthodox), then we would be able to
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find countably-infinite elementarily equivalent structures, one in which our new sentence holds, and
one in which is doesn’t, both with the same domain.

Finally, we will show that in addition to the properties from the previous paragraph, we can find struc-
tures which are isomorphic in the reduct of the finite fragment of our vocabulary that decides the
truth of our new sentence (which we proved must exist, by our first step), demonstrating a contradic-
tion.

Hence, we will conclude that First-Order Logic is the strongest Orthodox Logic such that it has
the Countable Compactness Property, and the N,-Downward-Lowenheim-Skolem-Tarski Property.
This is Lindstréom’s Theorem.

The proofs in this section are based on those given in [Flul6, pp. 79-81], but with many details filled
in.

6.1 The Proof

For this section, we let -* be a renaming (where the vocabulary is apparent from context), such that
the domain and range are disjoint; we also fix T to be the inverse of -*.

We now demonstrate the first result, that in w-Compact Orthodox Logics, at least as strong as First-
Order Logic, any sentence depends on only a finite fragment of the vocabulary.

Lemma 6.1.1. Let 7 beavocabulary and L > L, , an Orthodox Logic with the Countable Compactness
Property. Then, given ¥ € L(7), there is a finite vocabulary 7, < 7 such that for any t-structures W and

o

m?ffosmfroz(mth}k@mt:L%).

Proof: let @ < L(rU7") be

@ = {Vx; - Vx,(Rx; - x, <> R'x; - x,);n > 1,R € Rel (7)}

U {Voy -V, f (x5, %,) = [ (%, ..., %,)s2 2 1, f € Func, (7)}
U {c = ¢";c € Const(7)}.

Note, then, that clearly @ =, ¢ < " — as @ specifies completely everything about a structure.
Hence, by Countable Compactness, there is a finite set of sentences X € @ such that

Xe, vy oy

Now, take o as the, necessarily finite, set of symbols appearing in sentences in X (note that this is a
subset of 7 U 7"). Define o’ := (¢ \ 7)) U (¢ \ 7)"; 50, € 7and ¢ is finite.

Then, suppose M and N are 7-structures such that M |} ¢’ = N } &, and we may assume (by the
isomorphism property, as we only care about truth in the models, so we are free to re-arrange things
as we wish, as long as this is preserved) that M } &' = N } 7.

Now, we can see that It U N" =, X, because M and N agree on all the ¢ -sentences, and so every
o -sentence holds in the joint structure if and only if the (¢)*-sentence holds - i.e., every sentence of
X holds. Consequently, M UMN" &, ¥ <> ¥". So, we conclude that M &, ¢ if and only if N =, ¥;
for, otherwise, if without loss of generality, Mt #, ¥ but W =, ¥, then MU N" ¥, ¥ & ¢ as Lis

Orthodox, which would contradict the previous sentence.
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Similarly, by the renaming property, we have U™ &, ¢ if and only if 9t =, ¥. Hence, M =, ¢ if and
only if i =, . Thus, ¢ is such a finite vocabulary satisfying the conditions of the lemma. u

We will now use Lemma 6.1.1 to show that if an Orthodox Logic is stronger than First-Order Logic,
and has both the Countable Compactness, and the N,-Downward-Lowenheim-Skolem-Tarski Prop-
erties, then we can find countably-infinite structures which agree on all the First-Order sentences, but
disagree on a given sentence that is not equivalent to any First-Order sentence.

Lemma 6.1.2. Let 7 be a vocabulary, and let L > L, be an Orthodox Logic with both the N-
Downward-Liwenheim-Skolem-Tarski Property and the Countable Compactness Property. Then, let
v € L(7) be not equivalent to any first-order sentence. Then there exist elementarily equivalent countably
infinite structures W and N (on the same domain) such that

\

Me, v and N, .

Proof: let 7 be a vocabulary, and ¢ € £(7) be not equivalent to any first-order sentence. Then, choose
a finite vocabulary 7z, < 7 such that it satisfies Lemma 6.1.1 with our chosen ¢. Then, enumerate
L, (%) as ¢1, $5, ... By induction, using Theorem 5.1.6, which says that if ¢ is not equivalent to
any first-order sentence, then neither ¥ A ¢ nor ¥ A =g is, for any first-order sentence ¢, because
L is Orthodox, we conclude that there is an enumeration ¥3, ¥5, ... of sentences such that each y; €
{¢;, ¢}, and ¥ A ¥y A - A ¢, is not equivalent to a first-order sentence, for any » € N. Similarly,
Y Ay A AY;, is not equivalent to a first-order sentence either (we proved this factin Theorem 5.1.7;
again, as £ is Orthodox). And, so, by Theorem 5.1.5, which says that if a sentence if not equivalent to

a First-Order sentence it is satisfiable, both are satisfiable.

Define ¥ := {y;; n € Z'}. Then, by w-Compactness (and based on the fact that £ is Orthodox, and
the properties of Orthodox conjunction), there exist z-structures )t and N, such that

Me, YUyl

and
n e Yu {ﬂ;k},

(for each finite subset X of ¥, there is a maximum £ € w such that ¥, € X; then, any model of
¥ A A A1, isamodel of X, by our notational definition of conjunction, of which there must be
at least one, as this conjunctive sentence is satisfiable; a similar argument holds for ¥ u {=¢}) and by
the 8,-Downward-Lowenheim-Skolem-Tarski Property, we may assume that 9t and N are countably-
infinite structures.

But, we know that M 7, = N | 7, by construction, and, by Lemma 6.1.1, we must have that
M7 2 N 7. Also, by construction, we have that I F ¢ and N = -y Hence, by Corollary 5.2.2,
which says that for finite structures, isomorphism and elementary equivalence coincide, we must have

that || = [N] = N,. And, without loss of generality, we may assume that dom () = dom(Jt). M

Finally, we shall show that we can find structures, with the same properties as in Lemma 6.1.2, but
also have isomorphic 7-reducts, which we will conclude is a contradiction.

Lemma 6.1.3. Let v be a vocabulary, and let L > L, be an Orthodox Logic with both the X-
Downward-Lowenheim-Skolem-Tarski Property and the Countable Compactness Property. Then, let
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v € L(7) be not equivalent to any first-order sentence. If 7y < 7 satisfies Lemma 6.1.1 (with ), then,
there exist elementarily equivalent isomorphic structures M | 7y and N | 7, with

M7y ey Yand N} 7y =, .

Proof: first, choose a finite vocabulary 7, € 7 such thatitsatisfies Lemma 6.1.1, with our chosen ¢, like
in Lemma 6.1.2. Then, choose, for each z € N, new (27 + 1)-ary function symbols £, and g, .

Set7 :==7U7z" U{f; n € N}U{g,; n € N}. Note that 7’ is countable as it is a countable union of
countable sets.

Now, we set X to be the (countable) set of the following £(7’)-sentences:
* 1 (which expresses the fact that the 7-reduct is a model of ¥, because ¥ is a £(7)-sentence);
" (which expresses the fact that the 7”-reduct is a model of 7y"); and

* foreach £, ,(7,)-sentence @, the sentence ¢ <> ¢* (which expresses the fact that the 7y-reduct
and the 7; -reduct are elementarily equivalent).

Note that every finite subset of X is satisfiable, because we have just seen, in Lemma 6.1.2 a very similar
situation: two elementarily equivalent models, one modelling ¥ and one modelling =, so taking I
and N from that Lemma, we see that M U N" models X (and we note that our resulting structure is
countably-infinite).

We shall now see that we can add sentences to X that also enforce that the 7, and 7 reducts are iso-
morphic.

Next, for each » € N, select an enumeration of all the (logically distinct) £, , (7))-formula with at
most z+1 free variables, of which there are finitely many13 (denotedx,): 77,75 ... » 77:n. Then, consider
the following (countable) set I of £(7)-sentences:

e foreachn € N,

Vo - Vo, Vyy -V, Vi (ﬂy (/\O(vf (%5 5 %, %) © 77 (O - ,ymy)))

s

n

= NG s Xy ) O 7 D5 oes Voo Lo (X e Xy Ve e ,yn,x)))) ,

~
1l
o

which essentially says that if there is a y which satisfies the same £,  (7;)-formulz (with at most
n + 1 free variables) as x (except starred), when provided with other variables, then f, maps to
such a y, when it is given the same variables, and given x; and

* foreachn € N,

Vay o Vo, Vyy - Vy, Vax (Hy (/},(77? (X1 s Xy %) © 72" (s o ,ymy)))

s

n

AN/ CTREE Y A CCRPRPE AN, DERRS 9% )) g Vf*(yl""’yn’y)))a

~
Il
o

which is obviously similar to the previous, except g, gives us such an x when provided with the
other variables and y.

13Gee, for example, PY4612 Advanced Logic.
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Then, we note that given a finite set of sentences from I”, we can expand an arbitrary (7, Uz )-structure
into a model of I', because in satistying the sentences in I, all we care about is where £, and g, map to,
which does not interfere with any sentences not containing such function symbols (which no sentence
of a (7 U 7")-structure can). Therefore, every finite subset of X U I" (a countable set) is satisfiable. So,
by w-Compactness, X U I is satisfiable, and by the 8 -Downward-Léwenheim-Skolem-Tarski, there
is a countably-infinite model (see Lemma 6.1.2), O of X U T,

Ifwelet M := Ot zand N := (O} 7°)", then dom (D) = dom (M) = dom(N), M &, v, W, Y,
and M I 7, = N | 7, by our sentences in X. And, furthermore, we shall show that M | 7, = I | 7,
using the sentences in I” by the back-and-forth method. Note, that both M ' 7, and N | 7, are
countably-infinite as they share their domains with ©O.

Enumerate, without repeats, dom() as d;, d,, .... Then, because M 7, = N | 7, it follows, from
our sentences in /', that we can construct the following sequence of facts about elementary equival-
ence:

N7 u (dom(D)sd;) = Mt 7y U (dom(D); £,(d;))
M} 7, U (dom(D); dy, g1 (dy, fo(dy), dy)) = M} 75 1 (dom(D); £o(dy), dy)
N} 75 0 (dom(D); dy, gy (dy, fi(dy), dy), dy) = M T 71 (dom(D); fy(dy), dy, f1(dys fo(dy), dy))

that is, as we gradually add each element of the domain as a constant (to either of the structures), we
know how to choose an element of the other structure such that both elements of the domain satisfies
the same £, (7;)-sentences. Therefore, we can use this mapping to construct a sequence of partial
isomorphisms, which obviously have the back property and the forth property. So, by definition,
M I 75 and N | 7, are partially isomorphic. Thus, by Theorem 5.2.5, which says that countably-
infinite partially isomorphic structures are isomorphic, M | 7, is isomorphic to N | 7. n

Finally, we can make clear the contradiction, and prove Lindstrém’s Theorem:

Theorem 6.1.4 (Lindstrém’s Theorem). Let L < L, be an Orthodox Logic with the Countable
Compactness and Ny-Downward-Liwenheim-Skolem-Tarski Properties, then L is equivalent to L, .

Proof: suppose otherwise, then there is some vocabulary 7 such that there is a. £(7)-sentence ¢, which
is not equivalent to any first-order sentence. But then, by Lemma 6.1.3, we can find two countably-
infinite, isomorphic structures M and N such that M =, ¥ and N &, -, which are both 7-
structures, where 7, is a finite subset of 7, and, by Lemma 6.1.1, is such that it 9t = N, then M =, ¢
if and only if M &, . This is a contradiction, as we know that (due to the notational definition of
negation for Orthodox Logics) that 9t #, ¥, but M =, ¥, by construction. Hence, there cannot be
such a sentence.

So, any such Orthodox Logic, which is stronger than First-Order Logic, must either violate Countable

Compactness, or the 8-Downward-Léwenheim-Skolem-Tarski theorem. [

As we can see, then, Lindstrom’s Theorem nicely characterises First-Order Logic in relation to all
other Orthodox Logics (which are usually the main target of Abstract Model Theory).
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6.2 Lindstrom Theorems and Abstract Model Theory

This concludes our introduction to Abstract Model Theory; but, in the spirit of classifying and char-
acterising Logics (the goals of Abstract Model Theory), there are a host of other theorems that neatly
characterise Logics. They are named, after Lindstrém’s Theorem, “Lindstrom Theorems”. There are
other Lindstrém Theorems for First-Order Logic, which can also be seen in [Flul6, p. 82], character-
ising First-Order Logic with properties that have not been seen in this project.

Moving away from First-Order Logic, there are two other interesting classes of Logic that I suggest
an interested reader look into: Modal and Intuitionistic Logics. For an introduction to Modal Logic
(which I recommend an interested reader to look at first), I recommend the book [BRVO01]. Then,
for an introduction to Intuitionistic Logic (including an introduction to Heyting Algebras, which
are used to define Intuitionistic Logic, and are a generalisation of Boolean Algebras), the lecture notes
[BJOS5] are nice. Then, if an interested reader wants to look at the Lindstrom Theorems for these
Logics, a proof and statement of the Modal Lindstrém Theorem can be found in [Ben07]; and a
proof and statement of the Intuitionistic Lindstrém Theorem can be found in [OBZ21].

Had there been more space in this project, I would have liked to provide an introduction to Modal
and Intuitionistic Logics, and provided the aforementioned Lindstrém Theorems for the particular
varieties described by the Lindstrom Theorems. Moreover, I wished that I could have included the
deep relationship between Logics and games: we can express “truth in a structure”, “satisfiability”,
and “Logical equivalence of structures” with deeply connected games; that is, we can play a games on
structures to check if, for example in the first case, whether a given sentence holds in the structure.
And, in doing so, we can characterise a Logic by its “truth games”. Unfortunately, providing an intro-
duction to games took us too far off of the main path, and seemed to confuse the main message, and
so had to be cut. Istrongly recommend that an interested reader explore this relationship, for example

in a text like [Vdd11].

Finally, for more pure Abstract Model Theory, then there is [BF13], which is a very big book, all
about Abstract Model Theory. It is from this book that I have modelled our proof of Lindstrém’s
Theorem on, as well as our versions of Compactness, Léwenheim-Skolem-Tarski, Logic, and Ortho-
dox Logic. Having read this project, an interested reader should be able to pick up and read this book.
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