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Abstract
Abstract Model Theory is a field ofMathematical Logic, in whichMathematicians study the relations
between various “Logics” – which are methods of defining “truth in a structure” (that is, what holds in a
Group, or an Ordering, or a Graph, &c.). This project provides an introduction to the field, with no

prerequisites inMathematical Logic. We shall encounter various properties of Logics, such as
Compactness, and the Löwenheim-Skolem-Tarski Property; and we shall meet different kinds of Logics:
First-Order Logic, Boolean Logic, and Infinitary Logic, which we shall compare. The project ends with a

foundational result in Abstract Model Theory: Lindström’s Theorem, which neatly characterises
First-Order Logic by its properties. This is, to the best of my knowledge, the first self-contained

introduction to Lindström’s Theorem, which we work up to, by proving results about “Orthodox Logics”.
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1 Introduction
I intend this project to serve as an introduction to the field of AbstractModel Theory, which is a field
of Mathematical Logic, in which researchers seek to categorise and compare different Logics. And,
in particular, I believe that this will be the first comprehensive introduction to the field, from no pre-
requisites in Mathematical Logic, up to Lindström’s Theorem – and, so I hope that this project will
serve as useful to those whom want to understand such a key result. In order to get the most out of
reading this introduction, the reader should have some level of mathematical maturity, for example
being a 4th year student at the University of St Andrews, and should been very familiar with basic
algebra (for example, this familiarity could be picked up by the reader having done four of MT2501,
MT2505, MT3501, MT3505, and MT4003); in addition, it would be useful if the reader had some
knowledge of the hierarchy of infinities (i.e., know the difference between countable and uncountable
infinities).

In order to accommodate such ‘lax’ pre-requisites, along the way, we shall encounter, and be intro-
duced to different subfields of Mathematical Logic, namely Model Theory and Set Theory.

We shall begin, in the next section, by introducing the concepts of Boolean Algebra, Model Theory,
andLogic (in our specific sense), andwe shall prove thatBooleanAlgebras areLogics. Then, in Section
3, we shallmeet basic SetTheory, and encounter Infinitary Logics – an extension of First-Order Logic,
allowing infinitely long formulæ. Next, in Section 4, we will meet and prove some properties of First-
Order Logic, comparing them to those of the other Logics we havemet along the way. Following this,
in Section 5, we will be introduced to – and prove some results about – the idea of “expressibility”:
the properties that a Logic can “describe”. Finally, in Section 6, we will meet and prove Lindström’s
Theorem – a neat result that completely characterises First-Order Logic, and the foundational result
in Abstract Model Theory.

Before we begin, however, here is a list of the notation that shall be assumed:

• If𝑋 and 𝑌 are sets, then𝑋 ⊆ 𝑌means “improper subset”; that is,𝑋 ⊆ 𝑋.

• If𝑋 is a set,𝒫(𝑋) represents the powerset of𝑋.

• If 𝑓 is a function from a set𝑋 to a set 𝑌, we write 𝑓 ∶ 𝑋 → 𝑌.

• Given sets𝑋 and 𝑌, we write𝑋 × 𝑌 to denote the corresponding Cartesian product.

• The empty set is written as a stylised version of the Nordic letter ‘ø’: ∅.

• If𝐴 and 𝐵 are sets, we write 𝑓 ∶ 𝐴 → 𝐵[𝑎 ↦ 𝑔(𝑎)] to mean that 𝑓 is a function from𝐴 to 𝐵,
and is defined such that each 𝑎 in𝐴 is taken to 𝑔(𝑎).

• We write𝐴 ≔ 𝐵 to mean ‘𝐴 is defined to be 𝐵’.

• If𝑋 is a set, we write |𝑋| to denote the size, or cardinality, of𝑋.

• ℕ contains 0.

• “Countable” means “not uncountable”; i.e., we regard finite (including empty) sets as “count-
able”.

• If a proof ends with ‘�’, then I am claiming to have “filled in the details” (and so, the square),
by having done a substantial amount of work (this is not to say that the proof is novel, or that
the claim is novel, but that I have not copied the proof, or have done significant work to fill in
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the details of a proof that appears somewhere else); if however, a proof ends with ‘�’, then I
regard the proof as being “by the book”, and claim no originality.

2 Boolean Algebras, Models, and Logics
In this section,we introduce threenotions: BooleanAlgebras,ModelTheory, andLogics. Webeginby
defining and providing some preliminary results about “Boolean Algebras”. This will be reminiscent
of the Algebra modules at the University of St Andrews. Then, we will introduce the basic tenants
of Model Theory, using Boolean Algebras as examples. Next, we will see what a “Logic” is, and we
will see our first example of a Logic: Boolean Algebras; and finally, following this, we shall see that
First-Order Logic is indeed a “Logic” under our definition.

2.1 Boolean Algebras
First, we recall some basic definitions about “operations”, which shall be used to define “Boolean Al-
gebra”.

Definition 2.1.1 (Unary Operation). Let𝑋 be a non-empty set. If 𝑓 ∶ 𝑋 → 𝑋 is a function, we
say that 𝑓 is a unary operation on𝑋.

Definition 2.1.2 (Binary Operation). Let𝑋 be a non-empty set. If 𝑓 ∶ 𝑋 × 𝑋 → 𝑋 is a function,
we say that 𝑓 is a binary operation on𝑋.

We are now ready to define “Boolean Algebra”, following the axiomatisation given in [GH09]. This
will be done in the same manner as Groups, Rings,&c., by giving a list of axioms that the operations
on the underlying set must obey.

Definition 2.1.3 (Boolean Algebra). Let 𝐵 be an arbitrary non-empty set. We say 𝐵 is a Boolean
Algebra if and only if it has two binary operations∧ (read ‘meet’) and∨ (read ‘join’), a unary operation
¬ (read ‘complement’), and two constants (distinguished elements of 𝐵) ⊤ (read ‘top’) and ⊥ (read
‘bottom’) that satisfy the following list of axioms for all 𝑥, 𝑦, and 𝑧 in 𝐵:

Commutativity 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥; and 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥;

Distributivity 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧); and 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧);

Identity 𝑥 ∧ ⊤ = 𝑥; and 𝑥 ∨ ⊥ = 𝑥;

Complements 𝑥 ∧ ¬𝑥 = ⊥; and 𝑥 ∨ ¬𝑥 = ⊤;

Associativity 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧; and 𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧;

De Morgan ¬(𝑥 ∧ 𝑦) = ¬𝑥 ∨ ¬𝑦; and ¬(𝑥 ∨ 𝑦) = ¬𝑥 ∧ ¬𝑦;

Extremes 𝑥 ∧ ⊥ = ⊥; and 𝑥 ∨ ⊤ = ⊤;

Invariance 𝑥 ∧ 𝑥 = 𝑥; and 𝑥 ∨ 𝑥 = 𝑥;
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Duality ¬⊥ = ⊤; and ¬⊤ = ⊥;

Double Complement Elimination ¬¬𝑥 = 𝑥.

This list of axioms is, in fact, excessive. The first four are enough to axiomatise the concept of “Boolean
Algebra”. That is to say that the other axioms all follow from the first four. However, it useful to give
a much bigger list to better understand the structure of Boolean Algebras. We shall now see, but not
prove, a powerful fact about (finite) Boolean Algebras:

Theorem 2.1.4. Let 𝐵 be a finite Boolean Algebra. Then, there exists a finite set 𝑋 such that 𝐵 is
isomorphic to 𝒫(𝑋), where the meet operation ∧ corresponds to the intersection operation ∩ defined on
sets in 𝒫(𝑋); the join operation ∨ corresponds to the union operation ∪ defined on sets in 𝒫(𝑋); the
complement operation ¬ corresponds to the set complement operation ⋅∁ defined on sets in𝒫(𝑋) so that
𝐴 ↦ 𝒫(𝑋) ⧵ 𝐴; the top element ⊤ corresponds to the set𝑋; and the bottom element ⊥ corresponds to the
empty set ∅.

Moreover, given any finite set𝑋, there is some Boolean Algebra𝐵 isomorphic to𝒫(𝑋), with respect to the
same operations above.

Proof: see [GH09, p. 127]. �

Remark 2.1.5. In fact, any set𝑋with cardinality 𝑛 such that 2𝑛 = |𝐵|will do.

In essence, we can thus simply regard computations in finite Boolean Algebras as set-theoretic com-
putations in the powerset of any set𝑋with the required cardinality. So, wemay regard finite Boolean
Algebras as familiar objects.

2.2 Models
We are now ready to meet a key concept in Mathematical Logic, known as “structures”, which can
be seen (at least in some sense) as a generalisation of different algebraic concepts, like Groups, Rings,
Vector Spaces, etc. There is an entire field devoted to the study of structures; this is known as Model
Theory. In general, Model Theory studies the relationships between logical sentences and the struc-
tures in which they hold. Today, this field, in terms of applications outside of Mathematical Logic,
has been used to prove results in Algebraic Geometry.

In essence, a structure is a set with some relations and functions defined on it, as well as possible dis-
tinguished elements, known as constants. We identify the kind of structure by the symbols of the
relations, functions, and constants; and given this set of symbols, known as a vocabulary, we call a
structure a 𝜏-structure, where 𝜏 is the structure’s vocabulary; andwe denote the vocabulary of a struc-
ture𝔐 by Vocab(𝔐).

We shall now give the official definitions of “vocabulary” and “structure”, which I have pastiched
together from [Hod97] and [Mar02]. Then, we shall see some examples.

Definition 2.2.1 (Vocabulary). A vocabulary is a (possibly empty)1 set 𝜏 of function symbols, rela-
tion symbols, and constant symbols. Assigned to each function symbol and to each relation symbol

1In the context of First-Order Logic; Boolean Logic bans empty vocabularies.
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is a positive integer known as its arity; a function symbol with arity 𝑛 is a symbol corresponding to an
𝑛-place function – this holds, likewise, with relations.

Remark 2.2.2. For the purposes of this project, unless otherwise noted, we assume that all vocabular-
ies are, at most, countable sets; and we assume that the relations and functions have a finite arity, but
this can be relaxed if required.

Now, we have seen the definition of a “vocabulary”, we can examine some examples:

• {⋅, 1} – this is the vocabulary of Groups; ‘⋅’ is our binary function symbol (used to represent
Group multiplication), and ‘1’ is our constant symbol (used to represent the Group identity);

• {⋅, 1, −1} – this is an alternative vocabulary of Groups; in addition to our binary function sym-
bol, and our constant symbol, we add a unary function symbol ‘ −1’ (used to represent Group
inverses);

• {⋅, +, 1, 0} – this is the vocabulary of Rings; we have our binary relation symbols ‘⋅’ and ‘+’,
Ring multiplication and addition, respectively, and we have ‘1’ and ‘0’, the multiplicative and
additive identities;

• {∧, ∨, ¬, ⊤, ⊥} – this is the vocabulary of Boolean Algebras; we have our two 2-place function
symbols ‘∧’ and ‘∨’ (representing meet and join, respectively), we have our 1-place function
symbol ‘¬’ (representing complement), and we have our two constant symbols ‘⊤’ and ‘⊥’ (rep-
resenting top and bottom, respectively); and

• {<} – this is the vocabulary of orders; we have only a single binary relation symbol ‘<’.

It is useful to be able to take from a vocabulary the sets of relations, functions, and constants individu-
ally; and, in fact, we can do one better, as seen in our next definition:

Definition 2.2.3. If 𝜏 is a vocabulary, we write Const(𝜏) for the subset of 𝜏 containing only and all
the constant symbols in 𝜏. Similarly, for each 𝑛 ∈ 𝜔, we write Rel𝑛(𝜏) for the subset of 𝜏 containing
only and all the 𝑛-ary relation symbols in 𝜏. Again, for each 𝑛 ∈ 𝜔, we write Func𝑛(𝜏) for the subset
of 𝜏 containing only and all the 𝑛-ary function symbols in 𝜏.

We are now ready to meet structures, the main object of study inModel Theory.

Definition 2.2.4 (Structure). Given a vocabulary 𝜏, a 𝜏-structure𝔐 is a non-empty set𝑀, denoted
Dom(𝔐), called the domain of𝔐 together with

• for each constant symbol 𝑐 ∈ Const(𝜏), a distinguished element 𝑐′ of𝑀;

• for each positive integer 𝑛, and each 𝑛-ary function symbol 𝑓 ∈ Func𝑛(𝜏), an 𝑛-ary function
𝑓′ ∶ 𝑀𝑛 →𝑀; and

• for each positive integer 𝑛, and each 𝑛-ary relation symbol 𝑅 ∈ Rel𝑛(𝜏), an 𝑛-ary relation on
𝑀.

Given a structure, we can define a function which picks out the corresponding constant, function, or
relation to each symbol of the vocabulary:
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Definition 2.2.5 (Interpretation). Let 𝜏 be a vocabulary, and𝔐 a 𝜏-structure. We define an inter-
pretation function 𝜄𝔐 ∶ 𝜏 → 𝔐⧵{Dom(𝔐)}, which takes in a symbol 𝑠 of the vocabulary 𝜏, and gives
us the ‘interpretation’ of that symbol 𝑠 in𝔐.

We shall now see some examples of structures.

• Let 𝜏 = {⋅, 1}, the vocabulary of Groups. Then, the Group𝐾4 defined by the following Cayley
table is a 𝜏-structure:

𝜄𝛫4(⋅) 𝜄𝛫4(1) 𝑎 𝑏 𝑐
𝜄𝛫4(1) 𝜄𝛫4(1) 𝑎 𝑏 𝑐
𝑎 𝑎 𝜄𝛫4(1) 𝑐 𝑏
𝑏 𝑏 𝑐 𝜄𝛫4(1) 𝑎
𝑐 𝑐 𝑏 𝑎 𝜄𝛫4(1)

• Again, let 𝜏 = {⋅, 1}, the vocabulary of Groups. Then, if𝔐 is a structure, with domain𝑀 =
{𝑥, 𝑦, 𝑧}, 𝜄𝔐(1) = 𝑥, and 𝜄𝔐(⋅) being the function that maps any pair from𝑀2 to 𝑥 ∈ 𝑀, with
no other constants relations, or functions,𝔐 is a 𝜏-structure. Note that this is not a Group.

• Let 𝜏 = {⋅, +, 1, 0}, the vocabulary of Rings. Then, ℤ with the usual addition and multiplica-
tion, and with distinguished elements 0, 1 ∈ ℤ, is a 𝜏-structure.

• Let 𝜏 = {∧, ∨, ¬, ⊤, ⊥}, the vocabulary of Boolean Algebras. Then, if 𝑋 is a finite set, 𝒫(𝑋)
together with union, intersection, complement in𝒫(𝑋),𝑋, and ∅ is a 𝜏-structure – and, fol-
lowing Theorem 2.1.4, a Boolean Algebra.

• Let 𝜏 = {<}, the vocabulary of orders. Then any non-empty set 𝑀 together with a binary
relation 𝑅 on𝑀, defined to hold for any pair of elements of𝑀 is a 𝜏-structure if we interpret
the symbol ‘<’ as 𝑅, and we have no further constants, functions, or relations.

It is oft convenient to quickly write a structure, given pre-existing definitions of constants, relations,
and functions. This motivates the following notation: given a set𝑀, and if 𝑐1, 𝑐2,…, 𝑐𝑚 are constants,
𝑓1, 𝑓2,…, 𝑓𝑛 are operators (functions from (tuples of) and to𝑀) on𝑀, and𝑅1,𝑅2,…,𝑅𝑘 are relations
on𝑀, we can write the given structure as ⟨𝑀; 𝑐1, 𝑐2, … , 𝑐𝑚, 𝑓1, 𝑓2, … , 𝑓𝑛, 𝑅1, 𝑅2, … , 𝑅𝑘⟩. For example,
we can write the structure corresponding to the Ring ℤ as ⟨ℤ; ⋅, +, 0, 1⟩, where ⋅ and + are defined in
their usual way.

Sometimes, it is necessary to restrict ourselves to just a portion of a structure; and to do that, we use
the following definition:

Definition 2.2.6 (Reduct). Let 𝜏 be a vocabulary, and𝔐 a 𝜏-structure. If 𝜎 ⊆ 𝜏 is a vocabulary,
and𝔐 is a 𝜏-structure, then we define𝔐 ↾ 𝜎, the 𝜎-reduct of𝔐 as the 𝜎-structure that is obtained by
removing all of the constants, functions, and relations in𝔐, which come from the vocabulary 𝜏, but
not the vocabulary 𝜎.

For example, if 𝜏 = {⋅, 1}, the vocabulary of Groups, and 𝜎 = {⋅}, then as 𝜎 ⊆ 𝜏, if𝔐 ≔ ⟨𝐺; +, 𝑒⟩ is a
𝜏-structure, the 𝜎 reduct of𝔐,𝔐 ↾ 𝜎 = ⟨𝐺; +⟩.

Just as we are interested in removing constants, functions, and relations corresponding to fragments
of our vocabulary, we are sometimes interested in expanding structures, by adding new constants,
functions, and relations corresponding to symbols not appearing in our original vocabulary. This
motivates the following definition.
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Definition 2.2.7. Let 𝜎 and 𝜏 be vocabularies such that 𝜎 ∩ 𝜏 = ∅, and 𝔐 and 𝔑 be 𝜎 and 𝜏-
structures, respectively, withDom(𝔐) = Dom(𝔑). Thenwewrite𝔐⊔𝔑 to denote the (𝜎∪𝜏)- struc-
ture obtained by adding all of the constants, functions, and relations from𝔑 into𝔐 (or, indeed, vice
versa).

For example, consider the {⋅, 1}-structure ⟨ℤ; +, 0⟩ (the additive Group), and the {<}-structure ⟨ℤ; <⟩
(ℤwith its usual ordering), then we can combine the two structures (using the ⊔ operation) to obtain
a {⋅, <, 1}-structure ⟨ℤ; +, <, 0⟩ – the additive ordered Group ℤ.

There is one more large topic to be introduced in this subsection – isomorphisms. Just as we have
Group isomorphisms, order isomorphisms, Ring isomorphisms,&c., we can define 𝜏-isomorphisms,
where 𝜏 is any vocabulary.

Definition 2.2.8 (𝜏-isomorphism). Let 𝜏 be a vocabulary, and𝔐 and𝔑 be 𝜏-structures. Then we
call a bijection 𝜙 ∶ Dom(𝔐) → Dom(𝔑) a 𝜏-isomorphism if the following conditions hold:

• for each 𝑐 ∈ Const(𝜏), 𝜙(𝜄𝔐(𝑐)) = 𝜄𝔑(𝑐);

• for each positive integer 𝑛, each 𝑓 ∈ Func𝑛(𝜏), and each 𝑛-tuple (𝑚1, 𝑚2, … , 𝑚𝑛) ∈ Dom(𝔐),
𝜙(𝜄𝔐(𝑓)(𝑚1, 𝑚2, … , 𝑚𝑛)) = 𝜄𝔑(𝑓)(𝜙(𝑚1), 𝜙(𝑚2), … , 𝜙(𝑚𝑛)); and

• for each positive integer 𝑛, each 𝑅 ∈ Rel𝑛(𝜏), and each 𝑛-tuple (𝑚1, 𝑚2, … , 𝑚𝑛) ∈ Dom(𝔐),
𝜄𝔐(𝑅)𝑚1𝑚2 ⋯𝑚𝑛 if and only if 𝜄𝔑(𝑅)𝜙(𝑚1)𝜙(𝑚2) ⋯ 𝜙(𝑚𝑛).

We adopt the standardnotation to showthe existenceof an isomorphismbetween two𝜏-structures:

Definition 2.2.9. If two 𝜏-structures𝔐 and𝔑 are isomorphic, we write𝔐 ≅ 𝔑.

For example, if we have two {⋅, 1}-structures, which are Groups, and they are Group isomorphic, by
𝜙, then 𝜙 is also a {⋅, 1}-isomorphism.

However, we can also have {⋅, 1}-isomorphisms, which are not Group isomorphisms, if neither of the
{⋅, 1}-structures areGroups. This happens in the following case: we have {⋅, 1}-structure𝔐 ≔ ⟨𝑀 ≔
{𝑥, 𝑦, 𝑧}; 𝑓 ∶ 𝑀×𝑀 → 𝑀[(𝑎, 𝑏) ↦ 𝑥], 𝑥⟩, then the bijection 𝜙 ∶ 𝑀 → 𝑀 defined by 𝑥 ↦ 𝑥, 𝑦 ↦ 𝑧,
and 𝑧 ↦ 𝑦 is a {⋅, 1}-isomorphism, because 𝜙(𝜄𝔐(1)) = 𝜙(𝑥) = 𝑥 = 𝜄𝔐(1), and, for arbitrary 𝑎 and 𝑏
in𝑀, 𝜙(𝜄𝔐(⋅)(𝑎, 𝑏)) = 𝜙(𝑓(𝑎, 𝑏)) = 𝜙(𝑥) = 𝑥 = 𝑓(𝜙(𝑎), 𝜙(𝑏)) = 𝜄𝔐(⋅)(𝜙(𝑎), 𝜙(𝑏)).

Finally, we introduce a final definition, before we proceed onto the next section on Logic:

Definition 2.2.10. Let 𝜎 and 𝜏 be vocabularies. If ⋅∗ ∶ 𝜏 → 𝜎 is a bijection, and maps constant
symbols to constant symbols, 𝑛-ary function symbols to 𝑛-ary function symbols, and 𝑛-ary relation
symbols to 𝑛-ary relation symbols, then we call ⋅∗ a renaming, and given a 𝜏-structure𝔐, we can write
𝔐∗ to represent the corresponding 𝜎-structure, which arises as the result of replacing all the symbols
of 𝜏 by the corresponding symbols (under ⋅∗) in 𝜎.

For example, if 𝜏 = {⋅, 0} and 𝜎 = {+, 1}. Then, the function ⋅∗ ∶ 𝜏 → 𝜎 defined by ⋅ ↦ + and 0 ↦ 1
is a renaming, and if𝔐 is a 𝜏-structure, the renamed structure𝔐∗ = ⟨Dom(𝑀); 𝜄𝔐(⋅), 𝜄𝔐(0)⟩, and
𝜄𝔐∗(+) = 𝜄𝔐(⋅) and 𝜄𝔐∗(0) = 𝜄𝔐(1).
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2.3 Logic
We shall now meet the notion of “Logic” (I take the specific definition from [Ebb16]). We will then
prove that we can construct, from Boolean Algebras, a class of “Logics”.

Intuitively, a Logic, is amethodof testing for “truth in a structure”; we are given a list of properties that
we can check for, and a method of checking if they hold. The following definition seeks to generalise
this notion.

Definition 2.3.1 (Logic). ALogic is a functionℒ from vocabularies to strings of symbols (known as
ℒ-sentences), together with a relation ⊨ℒ between structures and ℒ-sentences (we read ‘⊨ℒ’ as ‘mod-
els in ℒ’ – and, we often write ℒ to mean the entire function-relation pair) such that the following
properties hold:

(i) if 𝜏 ⊆ 𝜎, thenℒ(𝜏) ⊆ ℒ(𝜎);

(ii) if𝔐 ⊨ℒ 𝜙, then 𝜙 ∈ ℒ(Vocab(𝔐));

(iii) (the isomorphism property) if𝔐 ⊨ℒ 𝜙 and𝔐 ≅ 𝔑, then𝔑 ⊨ℒ 𝜙;

(iv) (the reduct property) if 𝜙 ∈ ℒ(𝜏) and 𝜏 ⊆ Vocab(𝔐), then𝔐 ⊨ℒ 𝜙 if and only if𝔐 ↾ 𝜏 ⊨ℒ 𝜙;
and

(v) (the renaming property) if ⋅∗ ∶ 𝜏 → 𝜎 is a renaming, then for every 𝜙 ∈ ℒ(𝜏), there is a sentence
𝜙′ ∈ ℒ(𝜎) such that for any 𝜏-structure𝔐,𝔐 ⊨ℒ 𝜙 if and only if𝔐

∗ ⊨ℒ 𝜙
′

Informally, we take “𝜙 being modelled by 𝔐 in ℒ” as being some truth-claim about 𝜙 in 𝔐, with
respect to the Logicℒ; and, again, informally, each of the above conditions has the followingmeaning,
respectively:

(i) everyℒ-sentence is determined by some (possibly none) symbols in a given vocabulary;

(ii) a given structure𝔐 can only model (inℒ)ℒ-sentences that depend on the vocabulary of𝔐;

(iii) the modelling relation is invariant under isomorphism;

(iv) if aℒ-sentence 𝜙 is true in a structure𝔐with respect to the Logicℒ, then it is true only in virtue
of the relationships between the interpretations of the symbols upon which 𝜙 is determined by;
and

(v) after renaming a structure, there is a new renamed ℒ-sentence with the same meaning as any
ℒ-sentence before the renaming.

So, this definition of “Logic” is trying to capture the key notions of what it means for a concept of
“truth in a structure”. We shall now see our first example of a Logic: a BooleanAlgebra (or, as we shall
call it from now on, a “Boolean Logic”). We will begin by defining our Boolean-Logic-Sentences, and
once we have seen it, we will define how to check for “truth in a structure” given a Boolean Logic.
The definition is inductive, and later on, we shall use (almost – there shall be only two exceptions) the
same definition for the sentences of First-Order Logic.

Sometimes we read 𝔐 ⊨ℒ 𝜙 as “𝔐 satisfies 𝜙” or as “𝜙 is true in 𝔐” (according to the Logic ℒ).
We also use, as shorthand, where 𝑋 is a set of ℒ(𝜏)-sentences, 𝔐 ⊨ℒ 𝑋 to mean for each 𝜙 ∈ 𝑋,
𝔐 ⊨ℒ 𝜙.
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2.3.1 Sentences of Boolean Logic

We have a (never-ending) supply of variables. Typically, these are denoted by 𝑥, 𝑦, 𝑥1, 𝑥2, 𝑦1, 𝑦2, &c.
Our simplest “subsentential-unit” is a term, these showup in sentences, but are never sentences them-
selves.

Definition 2.3.2 (Terms). Given a vocabulary 𝜏, we define the terms of Boolean Logic as follows:

• every variable;

• every constant symbol in Const(𝜏);

• for each 𝑛 ∈ ℤ+, if 𝑓 ∈ Func𝑛(𝜏), and if 𝑡1, … , 𝑡𝑛 are terms, then so is 𝑓(𝑡1, … , 𝑡𝑛); and

• that’s all.

Let 𝜏 = {⋅, 1} be the vocabulary of Groups. Then, we have only one term (of the second kind) of
Boolean Logic, given 𝜏, namely 1, because 1 ∈ Const(𝜏), and is the only constant symbol in 𝜏. We
know, that by the first bullet point, that each variable is a term, and by the third, we also know that
1 ⋅ 1 is a term, and so are 𝑥 ⋅ 1 (where 𝑥 is a variable) and (1 ⋅ 1) ⋅ 1. More precisely, we should write
⋅(𝑥, 𝑦) instead of 𝑥 ⋅ 𝑦, by the above definition, but it is easy to see what is meant, so we stick to the
normal convention.

The idea of a term (given a vocabulary 𝜏), is that it somehow refers to – or, “picks out” – some element
of the 𝜏-structures.

Using these terms, we can build up to our simplest sentential unit, known as an “atomic sentence”,
but first, we need to define a slight generalisation of “sentences”, known as “formulæ”, and we begin
with “atomic formulæ”, which are the simplest formulæ.

Definition 2.3.3 (Atomic Formulæ). Given a vocabulary𝜏, wedefine theatomic formulæ ofBoolean
Logic as follows:

• if 𝑡1 and 𝑡2 are terms of Boolean Logic, given 𝜏, then 𝑡1 = 𝑡2 is an atomic formula (of Boolean
Logic, given 𝜏);

• for each𝑛 ∈ ℤ+, if𝑅 ∈ Rel𝑛(𝜏), and if 𝑡1, … , 𝑡𝑛 are terms ofBooleanLogic, given 𝜏, then𝑅𝑡1 ⋯ 𝑡𝑛
is an atomic formula (of Boolean Logic, given 𝜏); and

• that’s all.

Following our previous example, where 𝜏 = {⋅, 1}, we can look at some of the atomic formulæ of
Boolean Logic, given 𝜏: given the first bullet point, we know that 1 = 1, 𝑥 = 1, 1 = 𝑥, and 𝑥 = 𝑦 are all
atomic formulæ of Boolean Logic, given 𝜏, where 𝑥 and 𝑦 are variables, because 1, 𝑥, and 𝑦 are terms.
Given 𝜏, we have no atomic formulæ of the kind specified by the second bullet point, because there
are no relation symbols in 𝜏. If, however, we expand 𝜏, by defining a new vocabulary to also include
the binary relation symbol <, so 𝜏′ ≔ 𝜏 ∪ {<} (which is the vocabulary of ordered Groups), then we
will have some atomic formulæ of the second kind (given 𝜏′). In particular, here are some examples of
atomic formulæ of Boolean Logic (given 𝜏′) are (where 𝑥 and 𝑦 are variables): 1 < 𝑥, (1 ⋅ 1) < 1, and
(1 ⋅ 𝑥) < (𝑥 ⋅ (𝑥 ⋅ 𝑦)). Again, notice how we write 𝑥 < 𝑦, rather than < 𝑥𝑦, as our definition strictly
calls for.
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I said that atomic formulæwere a generalisation of atomic sentences; so, we shall now see the definition
of an atomic sentence. We say that an atomic formula of Boolean Logic (given a vocabulary 𝜏) 𝜙 is an
atomic sentence ofBooleanLogic (given a vocabulary𝜏) if andonly if𝜙 contains no variables. The idea
behind atomic sentences is that there is a direct way to check whether they are “true in a structure”,
whereas to check whether a non-atomic sentence is “true in a structure”, we rely on the facts about
the truth of the atomic sentences. That is to say that the truth of non-atomic sentences supervenes on
the truth of the atomic sentences in a given structure. This idea shall be made explicit when we define
our “models” relation for Boolean Logics (and later for First-Order and Infinitary Logics).

We often write “terms”, “sentences”, “formulæ”,&c., when the vocabulary and Logic in question is
clear.

We shall now define our direct way of checking whether an atomic sentence holds (is satisfied) in a
structure.

Definition 2.3.4. Let 𝔐 be a 𝜏-structure, then there exists a function 𝜈𝔐 which takes an atomic
sentence of Boolean Logic, given the vocabulary 𝜏, and outputs either 0 or 1 depending on whether
the atomic sentence holds in𝔐 or not.

Before explicitly defining this function, however, we first give a function which, when given a term
returns the element of the domainwhich the term should be interpreted to, andwhen given a relation,
gives the corresponding relation of the structure. We shall call this function 𝜈⋆𝔐 for a given 𝜏-structure
𝔐. We will inductively define this function, given a term, without variables, of Boolean Logic (given
the vocabulary 𝜏) or given some 𝑅 ∈ ⋃𝑖∈ℤ+ Rel𝑖(𝜏):

• if 𝑡 is a term of the form 𝑐 for 𝑐 ∈ Const(𝜏), then 𝜈⋆𝔐(𝑡) = 𝜄𝔐(𝑐);

• if 𝑡 is a term of the form 𝑓(𝑡1, … , 𝑡𝑛), where 𝑡1,…, 𝑡𝑛 are terms, and 𝑓 ∈ Func𝑛(𝜏), then 𝜈
⋆
𝔐(𝑡) =

𝜄𝔐(𝑓)(𝜈
⋆
𝔐(𝑡1), … , 𝜈⋆𝔐(𝑡𝑛)); and

• if 𝑅 ∈ ⋃𝑖∈ℤ+ Rel𝑖(𝜏), then 𝜈
⋆
𝔐 = 𝜄𝔐(𝑅).

We cannow inductively define 𝜈𝔐 as follows, given a 𝜏-structure𝔐 and an atomic sentence of Boolean
Logic (given 𝜏) 𝜙:

• If 𝜙 is of the form 𝑡1 = 𝑡2, where 𝑡1 and 𝑡2 are terms, then 𝜈𝔐(𝜙) = 1 if and only if (and 0
otherwise) 𝜈⋆𝔐(𝑡1) = 𝜈⋆𝔐(𝑡2); and

• If 𝜙 is of the form 𝑅𝑡1 ⋯ 𝑡𝑛 for terms 𝑡1, …, 𝑡𝑛, then 𝜈𝔐(𝜙) = 1 if and only if (and 0 otherwise)
the relation 𝜈⋆𝔐(𝑅)𝜈

⋆
𝔐(𝑡1) ⋯ 𝜈

⋆
𝔐(𝑡𝑛) holds.

For example, we will let 𝜏 = {⋅, <, 1} be the vocabulary of Ordered Groups, and we will consider the
𝜏-structure ⟨ℤ; +, <, 0⟩ (the additive Group with the usual ordering on the integers). Then, clearly
𝜙 ≔< ⋅(1, 1) ⋅ (1, ⋅(1, 1)) is an atomic sentence of Boolean Logic, given 𝜏, and so we can calculate
𝜈𝔐(𝜙):

𝜈𝔐(𝜙) = 1 ⇔ 𝜈⋆𝔐(<)𝜈
⋆
𝔐(⋅(1, 1))𝜈

⋆
𝔐(⋅(1, ⋅(1, 1))) holds

⇔ (𝜈⋆𝔐(1) + 𝜈
⋆
𝔐(1)) < (𝜈⋆𝔐(1) + (𝜈

⋆
𝔐(⋅(1, 1))) holds

⇔ (0 + 0) < (0 + (𝜈⋆𝔐(1) + 𝜈
⋆
𝔐(1)) holds

⇔ 0 < (0 + (0 + 0)) holds
⇔ 0 < 0

And, so, 𝜈𝔐(𝜙) = 0.



10 2 BOOLEANALGEBRAS, MODELS, AND LOGICS

We shall now see how, using atomic formulæ, we can build up to “full formulæ”, and from there we
can define, analogously to atomic sentences, “full sentences”.

Definition 2.3.5 (Formulæ). Given a vocabulary 𝜏, we define the formulæ of Boolean Logic as fol-
lows:

• if 𝜙 is an atomic formula of Boolean Logic, given 𝜏, then 𝜙 is a formula;

• if 𝜙 and 𝜓 are formulæ of Boolean Logic, given 𝜏, then (𝜙 ∧ 𝜓) is also;

• if 𝜙 and 𝜓 are formulæ of Boolean Logic, given 𝜏, then (𝜙 ∨ 𝜓) is also;

• if 𝜙 is a formula of Boolean Logic, given 𝜏, then ¬𝜙 is also; and

• that’s all.

We often omit brackets inside formulæ, where the meaning is still clear; and we almost always omit
any pair of brackets that would be the outermost symbols in the formula (sometimes we add brackets
too, where the meaning would be more clear).

Given the vocabulary ofGroups, 𝜏 = {⋅, 1}, we know that the following are formulæ of Boolean Logic
(where 𝑥 and 𝑦 are variables): ((𝑥 ⋅ 𝑦) < 1) ∧ 𝑥 = 𝑦, 𝑥 < 1, and (1 < 1) ∨ ¬(𝑥 < 1 ∧ 1 < (𝑥 ⋅ 𝑦)).

Again, we define the sentences of BooleanLogic (given a vocabulary 𝜏) to be the formulæ of Boolean Lo-
gic (given 𝜏) such that no variables appear in them. We can see a hint of the idea that atomic sentences
depend only on the structure itself, whereas non-atomic sentences are built up from these units, given
this definition, as the atomic sentences are our only “basis case” in our inductive definition. We can
also see that our definition of the sentences of Boolean Logic mirrors that of a Boolean Algebra: if we
were somehow able to map all the atomic sentences into elements of a Boolean Algebra, then every
formula would be an expression in the given BooleanAlgebra, and sowould be equal to some element
of the Boolean Algebra. This is the idea that we will use, shortly, to define Boolean Logic.

Given the language of ordered Groups, 𝜏 = {⋅, 1, <}, all of these sentences of Boolean Logic, given 𝜏
are the atomic formulæ, where no variables appear, but only the constant 1. For example, ((1 ⋅ 1) <
1) ∧ 1 = 1, 1 < 1, and (1 < 1) ∨ ¬(1 < 1 ∧ 1 < (1 ⋅ 1)).

The reason that formulæ are a generalisation of sentences, is that we can view formulæ as functions,
from the set of constants of the relevant vocabulary onto sentences of the relevant vocabulary. We
simply have to define which variables map to which constants. We can see that, by setting 𝑥, 𝑦 = 1,
we obtain the sentences ((1 ⋅ 1) < 1) ∧ 1 = 1, 1 < 1, and (1 < 1) ∨ ¬(1 < 1 ∧ 1 < (1 ⋅ 1)) from
the formulæ ((𝑥 ⋅ 𝑦) < 1) ∧ 𝑥 = 𝑦, 𝑥 < 1, and (1 < 1) ∨ ¬(𝑥 < 1 ∧ 1 < (𝑥 ⋅ 𝑦)). There is a standard
notation for this. If 𝜙 is a formula whose variables are among a set of variables 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛},
thenwe canwrite 𝜙(𝑣1, 𝑣2, … , 𝑣𝑛) to signify this fact, and if 𝑐1, 𝑐2, … , 𝑐𝑛 is a sequence of constants of the
relevant language, then we can write 𝜙(𝑐1, 𝑐2, … , 𝑐𝑛) to obtain the sentence resulting from replacing all
the occurrences of the variable 𝑣1 by the constant symbol 𝑐1, and all the occurrences of the variable 𝑣2
by the constant symbol 𝑐2, and so on. For example, if 𝜙 is ((𝑥 ⋅ 𝑦) < 1) ∧ 𝑥 = 𝑦, then we can write
𝜙(𝑥, 𝑦) to signify that 𝜙’s variable are among {𝑥, 𝑦}, and then 𝜙(1, 1) is ((1 ⋅ 1) < 1) ∧ 1 = 1.

2.3.2 Boolean Logic Modelling Relation

We have now seen enough information to be able to define our ‘models’ relation for Boolean Logic.
We will, as said before, map all of the atomic sentences onto elements of the Boolean Algebra, and,
given a sentence, we can, after the mapping of atomic sentences, evaluate the resulting expression of
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the Boolean Algebra, and then, we shall check if this value is in a special set, called the designated
values; we view this set as the set of elements of the Boolean Algebra that tell us that a sentence is a
true. We shall see this, formally, in our next definition.

Definition 2.3.6 (Boolean Logic). Given a Boolean Algebra 𝐵, a subset 𝐷 ⊆ 𝐵 (the designated
values), and amapping 𝜇which takes any atomic sentence of BooleanAlgebra (given any vocabulary),
and maps it so some element of 𝐵, we can define the Boolean Logicℬ𝐷,𝜇, which consists of a function
𝔹, defined on vocabularies, that gives us all the Sentences of Boolean Logic, given the vocabulary 𝜏;
and a relation ⊨ℬ𝐷,𝜇 between structures andℬ𝐷,𝜇-sentences, and is defined, using another function 𝜇

′

(which we shall define after), as follows (given a vocabulary 𝜏, a 𝜏-structure𝔐, and some 𝜙 ∈ 𝔹(𝜏)):

𝔐 ⊨ℬ𝐷,𝜇 𝜙 if and only if 𝜇′(𝜙) ∈ 𝐷.

Wewill nowdefine𝜇′, inductively: whichmaps sentences into elements of the BooleanAlgebra (given
a vocabulary 𝜏, a 𝜏-structure𝔐, and some 𝜙 ∈ 𝔹(𝜏)):

• if 𝜙 is an atomic sentence, then 𝜇′(𝜙) = 𝜇(𝜙) if 𝜈𝔐(𝜙) = 1, and 𝜇′(𝜙) = ¬𝜇(𝜙) otherwise (the
‘¬’ is Boolean complement);

• if 𝜙 is of the form 𝜓 ∧ 𝜒, then 𝜇′(𝜙) = 𝜇′(𝜓) ∧ 𝜇′(𝜒) (that is, our Boolean meet on the right of
the equality);

• if 𝜙 is of the form 𝜓 ∨ 𝜒, then 𝜇′(𝜙) = 𝜇′(𝜓) ∨ 𝜇′(𝜒) (that is, our Boolean join on the right of
the equality); and

• if 𝜙 is of the form ¬𝜓, then 𝜇′(𝜙) = ¬𝜇′(𝜓) (that is, our Boolean complement on the right of
the equality).

For an example, we will use the following BooleanAlgebra𝐵: the domain is {⊤, ⊥, ⊢, ⊣} (top, bottom,
left and right), and our operations are defined as:

∧ ⊤ ⊢ ⊣ ⊥
⊤ ⊤ ⊢ ⊣ ⊥
⊢ ⊢ ⊢ ⊥ ⊥
⊣ ⊣ ⊥ ⊣ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

∨ ⊤ ⊢ ⊣ ⊥
⊤ ⊤ ⊤ ⊤ ⊤
⊢ ⊤ ⊢ ⊤ ⊢
⊣ ⊤ ⊤ ⊣ ⊣
⊥ ⊤ ⊢ ⊣ ⊥

⊤ ⊢ ⊣ ⊥
¬ ⊥ ⊣ ⊢ ⊥

Our designated values𝐷, will be ⊤ and ⊢. We will consider the vocabulary 𝜏 = {⋅, <, 1}, of Ordered
Groups. Our 𝜏-structure𝔐 will be ⟨ℤ; +, <, 0⟩ (that is, the additive Group, with the usual ordering
on the integers). Wewill only define some values of 𝜇 that are relevant to us. We shall set 𝜇(1 = 1) = ⊤
and 𝜇(1 < 1) =⊣.

Then, we consider the sentence 𝜙 ≔ (1 = 1) ∧ ¬(1 < 1).
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𝔐 ⊨ℬ𝐷,𝜇 𝜙

⇔ 𝜇′(𝜙) ∈ 𝐷
⇔ (𝜇′(1 = 1) ∧ 𝜇′(¬(1 < 1))) ∈ 𝐷
⇔ (𝜇(1 = 1) ∧ ¬𝜇′(1 < 1)) ∈ 𝐷
⇔ (⊤ ∧ ¬¬ ⊣) ∈ 𝐷
⇔ (⊤ ∧ ¬ ⊢) ∈ 𝐷
⇔ (⊤∧ ⊣) ∈ 𝐷
⇔⊣∈ 𝐷,

as 𝜈𝔐(1 = 1) = 1, and 𝜈𝔐(1 < 1) = 0; hence;𝔐 ⊭ℬ𝐷,𝜇 𝜙.

We shall now provide a sketch of the proof2 that Boolean Logics are indeed Logics.

Theorem 2.3.7. Every Boolean Logic is a Logic.

Sketch of proof: Letℬ𝐷,𝜇 denote a Boolean Logic on the Boolean Algebra 𝐵.

• Certainly, 𝜏 ⊆ 𝜎 implies that 𝔹(𝜏) ⊆ 𝔹(𝜎), from our definition;

• if𝔐 ⊨ℬ𝐷,𝜇 𝜙, then 𝜙 ∈ 𝔹(Vocab(𝔐)), again, by definition;

• it can be shown that if𝔐 ≅ 𝔑, then 𝜈𝔐(𝜙) = 𝜈𝔑(𝜙) for any atomic 𝜙 ∈ 𝔹(Vocab(𝔐)), and
then, we can inductively prove the isomorphism property;

• the reduct property follows by our inductive definition: if𝔐 ⊨ℬ𝐷,𝜇 𝜙, and 𝜙 is a𝔹(𝜏)-sentence
then it can be shown that 𝜙 depends only and fully on 𝔹(𝜏)-atomic sentences, which, it can be
shown that, (they) are described by the 𝜏-reduct of𝔐, and so the reduct property follows;

• the renaming property also immediately follows from the inductive definitions: the required
sentence is just the result of applying the renaming to the original sentence.

�

If the reader is interested, they can prove these properties formally, given the above sketch.

We shall now define ‘Logical strength’:

Definition 2.3.8 (Logical Strength). Let ℒ and ℒ′ be Logics. We say that ℒ′ is as strong as ℒ (or,
equivalently, callℒ a Sublogic ofℒ′), and writeℒ ≤ ℒ′ if and only if for any vocabulary 𝜏we have

{{𝔐; 𝔐 ⊨ℒ 𝜙}; 𝜙 ∈ ℒ(𝜏)} ⊆ {{𝔐; 𝔐 ⊨ℒ′ 𝜙}; 𝜙 ∈ ℒ
′(𝜏)};

Essentially, what the above definition says, is that we call ℒ a Sublogic of ℒ′ if and only if for any
formula ℒ-sentence 𝜙, there is an ℒ′-sentence 𝜙′ such that 𝜙 and 𝜙′ are modelled by the same set of
𝜏-structures. So, very informally, we say a Logic is a Sublogic of another when the ‘stronger’ Logic has

2All this background information, for the first “proof” to only be a sketch... Disappointing, I know.
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at least as much expressive power, in terms of “picking out properties of structures”, as the ‘weaker’
Logic.

If ℒ ≤ ℒ′, and 𝜙 ∈ ℒ(𝜏) for a given vocabulary 𝜏, then we often write 𝜙 (yes; this is not a typo!) to
denote an arbitraryℒ′-sentence 𝜓 ∈ ℒ′(𝜏), which is such that

{𝔐; 𝔐 ⊨ℒ 𝜙} = {𝔐; 𝔐 ⊨ℒ′ 𝜓};

wedo this because it is convenient to view theweakerLogic as genuinely embedded in the stronger.

Let 𝐶 be an arbitrary Boolean Algebra, 𝜇1 be arbitrary, and 𝐷1 = ∅, then resulting Boolean Logic
𝒞𝐷1,𝜇1 can be seen to, for any 𝜏-structure, and any 𝜙 ∈ 𝔹(𝜏) to have𝔐 ⊭𝒞𝐷1,𝜇1 𝜙, for there is no way
for 𝜇(𝜙) to lie in𝐷1, as𝐷1 is empty. Thus, if we have another Logic ℒ, with a sentence that holds in
no structures, then 𝒞𝐷1,𝜇1 is a Sublogic of ℒ (we shall see that First-Order Logic is such a Logic, and
so 𝒞𝐷1,𝜇1 is a Sublogic of First-Order Logic). A different Boolean Logic with such a sentence can be
constructed as follows: let𝐵beour four elementBooleanAlgebra definedon {⊤, ⊥, ⊢, ⊣}, and set𝐷2 =
{⊤}, and let 𝜇2 be such that for any vocabulary 𝜏 there exists atomic 𝜙𝜏 ∈ 𝔹(𝜏) such that 𝜇2(𝜙𝜏) =⊢.
Then, we see that for any 𝜏-structure𝔐, 𝔐 ⊭ℬ𝐷2,𝜇2 𝜙𝜏, because 𝜇

′
2(𝜙𝜏) ∈ {⊢, ¬ ⊢} = {⊢, ⊣}, and

{⊢, ⊣} ∩ 𝐷2 = ∅, so no matter whether 𝜈𝔐(𝜙𝜏) = 0 or 𝜈𝔐(𝜙𝜏) = 1, 𝜇′2(𝜙𝜏) = 𝜇2(𝜙𝜏) ∉ 𝐷.

Explicitly, then, for any vocabulary 𝜏,

{{𝔐 ⊨𝒞𝐷1,𝜇1 𝜙}; 𝜙 ∈ 𝔹(𝜏)} = {∅; 𝜙 ∈ 𝔹(𝜏)} = {∅} ⊆ {{𝔐 ⊨ℬ𝐷2,𝜇2 𝜙}; 𝜙 ∈ 𝔹(𝜏)},

as {𝔐 ⊨ℬ𝐷2,𝜇2 𝜙𝜏} = ∅.

And, so, 𝒞𝐷1,𝜇1 ≤ ℬ𝐷2,𝜇2 .

We also have a notion of when Logics are equivalent; that is, when they both have the same express-
ive strength (a notion that will be made explicit in Section 5). But, the definition is easy enough to
understand, given one understands “Sublogic”.

Definition 2.3.9. We say that two Logicsℒ andℒ′ are equivalent if and only ifℒ ≤ ℒ′ andℒ′ ≤ ℒ.

2.4 First-Order Logic
Just aswe defined our sentences of BooleanAlgebras (given a vocabulary 𝜏), we can formally define the
sentences of First-Order Logic (given a vocabulary 𝜏). The resulting set of sentences will be familiar,
as we are used to working with First-Order Logic. The sentences of First-Order Logic are almost the
same as those of BooleanAlgebras, but we also allow quantification (that is, we can say sentences such
as “for all x, there is something bigger than x”), implication (“if x, then y”), and we define something
to be false in all structures.

2.4.1 Sentences of First-Order Logic

We begin by defining our terms of First-Order Logic in the same way as before. Once again, we have
a stock of variables: 𝑥, 𝑦, 𝑥1, 𝑥2, 𝑦1, 𝑦2,&c.

Definition 2.4.1 (Terms). Given a vocabulary 𝜏, we define the terms of First-Order Logic as follows:

• every variable;

• every constant symbol in Const(𝜏);
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• for each 𝑛 ∈ ℤ+, if 𝑓 ∈ Func𝑛(𝜏), and if 𝑡1, … , 𝑡𝑛 are terms, then so is 𝑓(𝑡1, … , 𝑡𝑛); and

• that’s all.

Our atomic formulæ (and consequently atomic sentences) are the same as before, but we also include
“⊥”, which we will take to always be false (that is, ⊥ is not true in any structure).

Definition 2.4.2 (Atomic Formulæ). Given a vocabulary 𝜏, we define the atomic formulæ of First-
Order Logic as follows:

• ⊥ is an atomic formula;

• if 𝑡1 and 𝑡2 are terms of First-Order Logic, given 𝜏, then 𝑡1 = 𝑡2 is an atomic formula;

• for each 𝑛 ∈ ℤ+, if 𝑅 ∈ Rel𝑛(𝜏), and if 𝑡1, … , 𝑡𝑛 are terms of First-Order Logic, given 𝜏, then
𝑅𝑡1 ⋯ 𝑡𝑛 is an atomic formula; and

• that’s all.

Again, from our atomic formulæ we can build our formulæ, using a similar definition to that for
BooleanAlgebras, butwe add somenewcases:→, for “implication”, ∃ for “existential quantification”,
and ∀ for “universal quantification”. So, in our structures, we can quantify over members of the
domain, rather than always making reference to a specific member of the domain, via a constant, like
in Boolean Algebras.

Definition 2.4.3 (Formulæ). Given a vocabulary 𝜏, we define the formulæ of First-Order Logic as
follows:

• if 𝜙 is an atomic formula of First-Order Logic, given 𝜏, then 𝜙 is a formula;

• if 𝜙 and 𝜓 are formulæ of First-Order Logic, given 𝜏, then (𝜙 ∧ 𝜓) is also;

• if 𝜙 and 𝜓 are formulæ of First-Order Logic, given 𝜏, then (𝜙 → 𝜓) is also;

• if 𝜙 and 𝜓 are formulæ of First-Order Logic, given 𝜏, then (𝜙 ∨ 𝜓) is also;

• if 𝜙 is a formula of First-Order Logic, given 𝜏, then ¬𝜙 is also;

• if 𝜙 is a formula of First-Order Logic, given 𝜏, and 𝑣 is a variable, then so is ∃𝑣𝜙;

• if 𝜙 is a formula of First-Order Logic, given 𝜏, and 𝑣 is a variable, then so is ∀𝑣𝜙; and

• that’s all.

In practice, however, we treat 𝜙∨𝜓 as an abbreviation for ¬(¬𝜙∧¬𝜓), 𝜙 → 𝜓 as an abbreviation for
¬𝜙 ∨ 𝜓, and ∀𝑣𝜙 as an abbreviation for ¬∃𝑣¬𝜙. So, we can dispense of the clauses for ∨,→, and ∀.
Moreover, we treat 𝜙 ↔ 𝜓 as an abbreviation for (𝜙 → 𝜓) ∧ (𝜓 → 𝜙).

We also often omit (or add brackets) when the meaning is clear; we typically omit a pair of brackets if
they are the outermost symbols.

Given a formula 𝜙 of First-Order Logic, we say a variable 𝑣 is bound if all occurrences of 𝑣 occur in
subformulæ3 of 𝜙 of the forms ∃𝑣𝜓 or ∀𝑣𝜓. If a formula in 𝜙 is not bound, we say it is free. Our

3A formula is a subformula of another if it appears, in totality, without any breaks in the latter.
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sentences of First-Order Logic, given a vocabulary 𝜏 are precisely the set of formulæ of First-Order Logic
that contain no free variables. This, is in contrast to Boolean Logics, where our sentences contained
no variables whatsoever.

For example, in the formula (𝑥 ∨ 𝑦), 𝑥 and 𝑦 are free; but in the formula ∃𝑥∀𝑦(𝑥 ∨ 𝑦), both 𝑥 and 𝑦 are
bound. Therefore, the latter is a sentence, but the former is not.

We can, in some sense, treat formulas like functions: if 𝜙 is a formula, whose free variables are among
𝑣1, 𝑣2, … , 𝑣𝑛, then we can write 𝜙(𝑣1, 𝑣2, … , 𝑣𝑛) to signify this fact. Then, if 𝑐1, 𝑐2, … , 𝑐𝑛 are constant
symbols, we can write 𝜙(𝑐1, 𝑐2, … , 𝑐𝑛) to obtain the sentence that results from replacing the free occur-
rences of the variable 𝑣𝑖 with the constant symbol 𝑐𝑖. For example, if 𝜙(𝑥, 𝑦) is (𝑥 ∨ 𝑦), then 𝜙(𝑐1, 𝑐2) is
(𝑐1 ∨ 𝑐2).

2.4.2 Truth in First-Order Logic

Definition 2.4.4. We denote First-Order Logic asℒ𝜔,𝜔. We shall see why in the next section.

Definition 2.4.5 (First-Order Logic). First-Order Logic (denoted ℒ𝜔,𝜔) is the function ℒ𝜔,𝜔 that
returns the set of Sentences of First-Order Logic, given a vocabulary 𝜏 together with a relation ⊨ℒ𝜔,𝜔
between structures and ℒ𝜔,𝜔-sentences, which is defined, inductively, as follows (for a vocabulary 𝜏, a
ℒ𝜔,𝜔(𝜏)-sentence 𝜙, and a 𝜏-structure𝔐):

• for 𝜙 = ⊥, then𝔐 ⊭ℒ𝜔,𝜔 𝜙;

• for atomic (excluding ⊥) 𝜙, then𝔐 ⊨ℒ𝜔,𝜔 𝜙 if and only if 𝜈𝔐(𝜙) = 1;

• for 𝜙 of the form ¬𝜓, then𝔐 ⊨ℒ𝜔,𝜔 𝜙 if and only if𝔐 ⊭ℒ𝜔,𝜔 𝜓;

• for 𝜙 of the form 𝜓 ∧ 𝜒, then𝔐 ⊨ℒ𝜔,𝜔 𝜙 if and only if𝔐 ⊨ℒ𝜔,𝜔 𝜓 and𝔐 ⊨ℒ𝜔,𝜔 𝜒; and

• for 𝜙 of the form ∃𝑣𝜓(𝑣), then𝔐 ⊨ℒ𝜔,𝜔 𝜙 if and only if𝔐⊔⟨Dom(𝔐);𝑚⟩ ⊨ℒ𝜔,𝜔 𝜓(𝑐), for some
constant 𝑐 not in 𝜏 and some interpretation of 𝑐 in the {𝑐}-structure ⟨Dom(𝔐);𝑚⟩.

For example, if 𝜏 = {⋅, <, 1}, the vocabulary of Groups, and we let𝔐 denote the 𝜏-structure ⟨ℤ; +, <
, 0⟩ (the additive Group with the usual ordering on the integers). Then, we will consider whether
𝔐 ⊨ℒ𝜔,𝜔 ∀𝑥(⋅(𝑥, 1) = 𝑥).
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𝔐 ⊨ℒ𝜔,𝜔 ∀𝑥(⋅(𝑥, 1) = 𝑥)

⇔ 𝔐 ⊨ℒ𝜔,𝜔 ¬∃𝑥¬(⋅(𝑥, 1) = 𝑥)

⇔ 𝔐 ⊭ℒ𝜔,𝜔 ∃𝑥¬(⋅(𝑥, 1) = 𝑥)

⇔ there’s no𝑚 ∈ Dom(𝔐) and constant 𝑐 ∉ 𝜏 , with𝔐⊔ ⟨𝔐;𝑚⟩ ⊨ℒ𝜔,𝜔 ¬(⋅(𝑐, 1) = 𝑐)

⇔ there’s no𝑚 ∈ Dom(𝔐) and constant 𝑐 ∉ 𝜏 , with𝔐⊔ ⟨𝔐;𝑚⟩ ⊭ℒ𝜔,𝜔 (⋅(𝑐, 1) = 𝑐)

⇔ for any𝑚 ∈ Dom(𝔐) and constant 𝑐 ∉ 𝜏 ,𝔐⊔ ⟨𝔐;𝑚⟩ ⊨ℒ𝜔,𝜔 (⋅(𝑐, 1) = 𝑐)

⇔ for any𝑚 ∈ Dom(𝔐) and constant 𝑐 ∉ 𝜏 , 𝜈𝔐⊔⟨𝔐;𝑚⟩(⋅(𝑐, 1) = 𝑐) = 1
⇔ for any𝑚 ∈ Dom(𝔐) and constant 𝑐 ∉ 𝜏 , 𝜈⋆𝔐⊔⟨𝔐;𝑚⟩(⋅(𝑐, 1)) = 𝜈⋆𝔐⊔⟨𝔐;𝑚⟩(𝑐)

⇔ for any𝑚 ∈ Dom(𝔐) and constant 𝑐 ∉ 𝜏 , 𝜄𝔐⊔⟨𝔐;𝑚⟩(⋅)(𝜈
⋆
𝔐⊔⟨𝔐;𝑚⟩(𝑐), 𝜈

⋆
𝔐⊔⟨𝔐;𝑚⟩(1)) = 𝜄𝔐⊔⟨𝔐;𝑚⟩(𝑐)

⇔ for any𝑚 ∈ Dom(𝔐) and constant 𝑐 ∉ 𝜏 , 𝜄𝔐⊔⟨𝔐;𝑚⟩(𝑐) + 𝜄𝔐⊔⟨𝔐;𝑚⟩(1) = 𝑚
⇔ for any𝑚 ∈ Dom(𝔐) and constant 𝑐 ∉ 𝜏 ,𝑚 + 0 = 𝑚,

which is clearly true, and so𝔐 ⊨ℒ𝜔,𝜔 ∀𝑥(⋅(𝑥, 1) = 𝑥).

We must now verify that First-Order Logic is indeed a Logic.

Theorem 2.4.6. First-Order Logic is a Logic.

Sketch of proof:

• Clearly, if 𝜏 ⊆ 𝜎, thenℒ𝜔,𝜔(𝜏) ⊆ ℒ𝜔,𝜔(𝜎), by our definition;

• if 𝔐 ⊨ℒ𝜔,𝜔 𝜙, then, by our definition, 𝔐 is a 𝜏-structure, for some vocabulary 𝜏, and 𝜙 ∈
ℒ𝜔,𝜔(𝜏); that is, 𝜙 ∈ ℒ𝜔,𝜔(Vocab(𝔐));

• by our inductive definition of satisfaction, it can be seen that the truth of a sentence depends,
fundamentally, only on the truth of the atomic sentences (that is, it is truth-functional), and
atomic sentences are preserved by isomorphism (that is, if𝔐 ≅ 𝔑, then 𝜈𝔐(𝜙) = 𝜈𝔑(𝜙)) – and
so it can be proved, inductively, that the isomorphism property holds;

• again, the reduct property follows by our inductive definition: if𝔐 ⊨ℒ𝜔,𝜔 𝜙, and 𝜙 is aℒ𝜔,𝜔(𝜏)-
sentence then 𝜙 depends only and fully on ℒ𝜔,𝜔(𝜏)-atomic sentences, which are described by
the 𝜏-reduct of𝔐, and so the reduct property follows;

• the renaming property also immediately follows from the inductive definitions: the required
sentence is just the result of applying the renaming to the original sentence.

�

An interested reader can feel free to work out the intricacies.

2.4.3 Orthodox Logics

In this section, we shall introduce the notion of “Orthodox Logic”, of which First-Order Logic one.
Orthodox Logics are the main interest of study in Abstract Model Theory (well, really, “Regular Lo-
gics” are, but these have slightly more stringent conditions that we shall not go into – all Regular
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Logics are Orthodox Logics). Lindström’s Theorem, the highlight of this project, is also about Or-
thodox Logics. Boolean Logics are not, in general, Orthodox, and so in the next section, we shall
introduce a class of Logics extending First-Order Logic, which are Orthodox. The properties com-
prising the definition of “Orthodox Logic”, are taken from [Bar16, pp. 29–30]. The theorems in this
section exist in “Mathematical Folklore”, but the proofs are original.

Here, then, is what we mean when we say a Logic is “Orthodox”:

Definition 2.4.7 (Orthodox Logic). Let ℒ be a Logic. We say that ℒ is an Orthodox Logic if and
only ifℒ has the following properties:

• (Atom Property) for all vocabularies 𝜏, and all atomic 𝜙 ∈ ℒ𝜔,𝜔(𝜏), there is a sentence 𝜓 ∈ ℒ(𝜏)
such that for any 𝜏-structure𝔐,

𝔐 ⊨ℒ 𝜓 if and only if 𝔐 ⊨ℒ𝜔,𝜔 𝜙;

• (Negation Property) for all vocabularies 𝜏, and all 𝜙 ∈ ℒ(𝜏), there is a sentence 𝜓 ∈ ℒ(𝜏) such
that, for any 𝜏-structure𝔐,

𝔐 ⊨ℒ 𝜓 if and only if 𝔐 ⊭ℒ 𝜙;

• (Conjunction Property) for all vocabularies 𝜏, and all 𝜙, 𝜓 ∈ ℒ(𝜏), there is a sentence 𝜒 ∈ ℒ(𝜏)
such that, for any 𝜏-structure𝔐,

𝔐 ⊨ℒ 𝜒 if and only if 𝔐 ⊨ℒ 𝜙 and𝔐 ⊨ℒ 𝜓; and

• (Particularisation Property) for all vocabularies 𝜏, any 𝑐 ∈ Const(𝜏), and any 𝜙 ∈ ℒ(𝜏), there is
a sentence 𝜓 ∈ ℒ(𝜏 ⧵ {𝑐}) such that, for any (𝜏 ⧵ {𝑐})-structure𝔐,

𝔐 ⊨ℒ 𝜓 if and only if 𝔐⊔ ⟨Dom(𝔐);𝑚⟩ ⊨ℒ 𝜙,

for some𝑚 ∈ Dom(𝔐).

If a Logic has both theNegationProperty and theConjunctionProperty, we say that it has theBoolean
Property. If a Logic has the Negation Property, then we use ¬𝜙 to represent the sentence 𝜓 in the
corresponding clause above. If a Logic has the Conjunction Property, then we use 𝜙 ∧ 𝜓 to represent
the sentence 𝜒 in the corresponding clause above. If a Logic has the Particularisation Property, then
we use ∃𝑐𝜙 to represent the sentence 𝜓 in the corresponding clause above.

We can see that First-Order Logic is an Orthodox Logic quite easily:

Theorem 2.4.8. First-Order Logic is an Orthodox Logic.

Proof:

• The Atom Property immediately follows, by definition.

• Let 𝜏 be a vocabulary, and let 𝜙 ∈ ℒ𝜔,𝜔(𝜏), then note that¬𝜙 ∈ ℒ𝜔,𝜔(𝜏) and, for any 𝜏-structure
𝔐,

𝔐 ⊭ℒ𝜔,𝜔 𝜙 if and only if𝔐 ⊨ℒ𝜔,𝜔 ¬𝜙,

by definition. This establishes the Negation Property.
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• The proof of the Conjunction Property is similar to that of the Negation Property.

• Let 𝜏 be a vocabulary, and let 𝜙 ∈ ℒ𝜔,𝜔(𝜏), if there are no constant symbols in 𝜏, we are done,
so assume that 𝑐 ∈ Const(𝜏). If 𝜙 ∈ ℒ𝜔,𝜔(𝜏 ⧵ {𝑐}), we are also done, and so we assume that
𝜙 ∉ ℒ𝜔,𝜔(𝜏 ⧵ {𝑐}). Then, denote, by 𝜙

′, the result of replacing all occurrences of 𝑐 in 𝜙 by
𝑣, a variable which does not appear anywhere in 𝜙. Then, define 𝜓 to be ∃𝑣𝜙′. Then, for any
(𝜏 ⧵ {𝑐})-structure𝔐, we have

𝔐 ⊨ℒ𝜔,𝜔 𝜓 if and only if there is some𝑚 ∈ Dom(𝔐) such that𝔐⊔ ⟨𝔐;𝑚⟩ ⊨ℒ𝜔,𝜔 𝜙
′(𝑚),

which, obviously, happens if and only if𝔐⊔ ⟨Dom(𝔐);𝑚⟩ ⊨ℒ𝜔,𝜔 𝜙, for some𝑚 ∈ Dom(𝔐).
Hence, First-Order Logic has the Particularisation Property.

�

Wewill implicitly use this Theorem throughout, without making reference to it.

Just as we defined disjunction and implication as abbreviations in First-Order Logic, we can do the
same in Logics with the Boolean Property, and, moreover, they will work as expected.

Theorem 2.4.9. Let ℒ be a Logic with the Boolean Property, let 𝜏 be a vocabulary, and let 𝜙 and 𝜓 be
sentences ofℒ(𝜏). Then, if we define 𝜙 ∨ 𝜓 ≔ ¬(¬𝜙 ∧ ¬𝜓), we see that, for any 𝜏-structure𝔐,

𝔐 ⊨ℒ 𝜙 ∨ 𝜓 if and only if 𝔐 ⊨ℒ 𝜙 or𝔐 ⊨ℒ 𝜓.

If we define 𝜙 → 𝜓 ≔ ¬𝜙 ∨ 𝜓, we see that, for any 𝜏-structure𝔐,

𝔐 ⊨ℒ 𝜙 → 𝜓 if and only if 𝔐 ⊨ℒ 𝜙 implies𝔐 ⊨ℒ 𝜓.

Proof:

𝔐 ⊨ℒ 𝜙 ∨ 𝜓 ⇔ 𝔐 ⊨ℒ ¬(¬𝜙 ∧ ¬𝜓)
⇔ 𝔐 ⊭ℒ ¬𝜙 ∧ ¬𝜓
⇔ 𝔐 ⊭ℒ ¬𝜙 or𝔐 ⊭ℒ ¬𝜓
⇔ 𝔐 ⊨ℒ 𝜙 or𝔐 ⊨ℒ 𝜓.

And, similarly,

𝔐 ⊨ℒ 𝜙 → 𝜓 ⇔ 𝔐 ⊨ℒ ¬𝜙 ∨ 𝜓
⇔ 𝔐 ⊨ℒ ¬𝜙 or𝔐 ⊨ℒ 𝜓
⇔ 𝔐 ⊭ℒ 𝜙 or𝔐 ⊨ℒ 𝜓
⇔ 𝔐 ⊨ℒ 𝜙 implies𝔐 ⊨ℒ 𝜓.

�

Henceforth, we shall use the abbreviations “𝜙 ∨ 𝜓” and “𝜙 → 𝜓”. Moreover, it can be checked by
the reader, that if we define 𝜙 ↔ 𝜓 ≔ (𝜙 → 𝜓) ∧ (𝜓 → 𝜙), then this also acts as expected: it is
satisfied if and only if 𝜙 and𝜓 both are satisfied, or are both not satisfied. And, so we shall employ this
abbreviation also. It can also be verified, that if we define ∀𝑣𝜙 ≔ ¬∃𝑣¬𝜙, that it acts as expected also.
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Thus, we shall make use of this abbreviation too. We will use these abbreviations without reference
to the above theorem.

We can see that no Boolean Logic is Orthodox. If a Boolean Logic has the Atom Property and the
Particularisation Property, then it cannot have the Particularisation Property, for Boolean Logics, as
we have defined them, can only talk about named objects of a structure, never about any arbitrary
object of the structure.

We can also have Boolean Logics that do not have the Boolean Property (or, indeed, that do not have
Atom Property). For example, our Logic 𝒞𝐷1,𝜇1 , from earlier. This does not have the Atom Property,
because it has no true sentences; and does not have the Negation Property (a fortiori, the Boolean
Property) for the same reason. It does, however, have the conjunction property, as no sentence is ever
modelled by a structure.

Because⊥ is notmodelled by any structure, nomatter the vocabulary, it follows that𝒞𝐷1,𝜇1 ≤ ℒ𝜔,𝜔. We
can also, using Boolean Logics, define the fragment of First-Order Logic that contains no quantifiers.
This is known as Propositional Logic. We will not prove that this is the case, but it easy to see. Let 𝐵
be any non-degenerate4 Boolean Algebra. Set𝐷 ≔ {⊤}, and let 𝜇 be such that 𝜇(𝜙) = ⊤. Then, for
any vocabulary 𝜏, as every atomic sentence of ℒ𝜔,𝜔(𝜏) is an atomic sentence of 𝔹(𝜏), with the excep-
tion of ⊥5, it follows thatℬ𝐷,𝜇 is Logically equivalent to the fragment of First-Order Logic without
quantifiers. And, consequently,ℬ𝐷,𝜇 ≤ ℒ𝜔,𝜔. Moreover,ℬ𝐷,𝜇 necessarily has the Boolean Property
and the Atom Property.

In general, Abstract Model Theory is concerned with Orthodox Logics, and so henceforth, we shall
drop talk of Boolean Algebras, and in our next section, we shall see a new class of Orthodox Logics:
Infinitary Logics. Boolean Logics, however, are not without merit, they are used in the field Set The-
ory for the technique of forcing. In fact, the only Fields Medal for work in Mathematical Logic was
awarded to Paul Cohen in 1966, who proved that the Axiom of Choice and generalised continuum
hypothesis are independent of the ZF axioms of Set Theory, by considering Boolean Logics (although
not quite defined as we have done). For the reader, however, they can provide a rich class of (simple)
Logics to play around with.

So prevalent is First-Order Logic in Mathematics (and, in particular, model theory), that we have a
special name for when two structures agree on all First-Order sentences:

Definition 2.4.10 (Elementary Equivalence). Let 𝜏 be a vocabulary. Let𝔐 and𝔑 be 𝜏-structures.
We say𝔐 and𝔑 are elementarily equivalent if for all 𝜙 ∈ ℒ𝜔,𝜔(𝜏),

𝔐 ⊨ℒ𝜔,𝜔 𝜙 if and only if 𝔑 ⊨ℒ𝜔,𝜔 𝜙.

If𝔐 and𝔑 are elementarily equivalent, we write𝔐 ≡ 𝔑.

Abstract Model Theory is the practice of comparing (Orthodox) Logics: whether that be by Logical
strength, properties, or general classifications; we will end with a general classification of First-Order
Logic, Lindström’s Theorem, by proving that it is the strongest Orthodox Logic to have certain prop-
erties.

But, now, let us meet some more Orthodox Logics, Infinitary Logics, which are stronger than First-
Order Logic. That is, we shall see that First-Order Logic is a Sublogic of each Infinitary Logic, and

4I.e., ⊥ ≠ ⊤.
5Inℬ𝐷,𝜇, we can simply replace any occurrence of ⊥ (that is, our First-Order symbol) with 𝜙 ∧ ¬𝜙 for any sentence 𝜙).
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that each Infinitary Logic has at least one sentence 𝜙 (for some vocabulary 𝜏) such that the set of
all 𝜏-structures in which 𝜙 is satisfied is different to any set of 𝜏-structures satisfying any First-Order
sentence 𝜓.

3 Ordinals, Cardinals, and Infinitary Logic
A pre-requisite of reading this project was that the reader had encountered the notion of “uncount-
ability”. In this section, we will show the full generalisation of “infinities”, and show that there are
even different sizes of “uncountable infinities”. We will first see an introduction to “ordinal num-
bers”, which are named after the linguistic concept of “ordinal” (English examples are: first, second,
third,&c.), which represent numbers associated with orderings. Then, we shall see an introduction
to “cardinal numbers”, which are named after the linguistic concept of “cardinal” (English examples
are: one, two three), which represent numbers associated with counting – or, more specifically, with
the size of collections. These two concepts are, in some sense, the foundational results of Set Theory, a
field of mathematics which studies structures that satisfy chosen axioms to represent sets, in the same
way that Group Theory is the field which studies structures that satisfy the chosen axioms of groups.
Finally, we shall use these new concepts to define, and see some examples of, Infinitary Logics, which
are (proper) extensions of First-Order Logic.

The sections on Ordinals and Cardinals use definitions from (or, that are strongly based on those
given in) [Jec02] and [Kun13].

3.1 Ordinal Numbers
The Ordinal Numbers are generalisation of orderings. Just as we count 0, 1, 2, …, we may want to
continue counting after we have exhausted all the natural numbers. For example, we could have an
ordering, where we list all of the natural numbers, and then we list all of the natural numbers again,
but with a star after them:

0, 1, 2, 3, … , 0⋆, 1⋆, 2⋆, …

By considering ordinals, we can describe the positions of 0⋆, 1⋆, and so on, in the list: 0⋆ is in the 𝜔th
position, while 0 is in the 0th position; and, in general, 𝑛⋆ is in the(𝜔 + 𝑛)th position.

But what if we had 3 copies, or 4 copies of the natural numbers in a sequence? Or what if we had
countably many copies, or uncountably many copies? Ordinals allow us to describe all of these situ-
ations.

Ordinals allow us to describe the location of the objects in all of these orders. The class of ordinals,
then, is well-ordered; that is, there is a total ordering such that every (non-empty) set of ordinals has a
least element. Moreover, every non-empty set of ordinals has a supremum.

The smallest ordinal is 0, and all of the natural numbers are ordinals. We define 𝜔 to be the smallest
ordinal number bigger than all of the natural numbers. The next ordinal after 𝜔 is denoted by 𝜔 + 1,
after that, 𝜔 + 2, and so on. The ordinal 𝜔 has no immediate predecessors, and so is called a limit
ordinal. If an ordinal has an immediate predecessor, it is called a successor ordinal.
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If 𝛼 is an ordinal, then there is no ordinal between 𝛼 and 𝛼 + 1. If 𝛼 is a limit ordinal, then it is defined
to be the supremum of all the preceding ordinals. So, 𝜔 ≔ sup{𝑛 ∈ ℕ}.

We shall use ordinals to index elements of sets: for example, the set {𝑥𝑖; 𝑖 < 𝛼} is a set which has
elements that have been indexed by the ordinal 𝛼.

The smallest limit ordinal after 𝜔 is defined as sup{𝜔 + 𝑛; 𝑛 < 𝜔} = 𝜔 + 𝜔 = 2𝜔. Returning to our
first example, we can define our ordering

0, 1, 2, 3, … , 0⋆, 1⋆, …

as follows: let 𝑥𝑖 be 𝑖 if 𝑖 < 𝜔, otherwise, let 𝑥𝑖 be 𝑛
⋆, where 𝑖 = 𝜔 + 𝑛; and, so our ordering would be

{𝑥𝑖; 𝑖 < 𝜔}.

Using ordinals, we can now define cardinals, using the fact that any well-ordering is order-isomorphic
to a set of the form {𝛼 < 𝛽; 𝛼 is an ordinal}, for some ordinal 𝛽.

3.2 Cardinal Numbers
We can define the notion of cardinality as follows:

Given a set𝑋, and, assuming the Axiom of Choice, we can well-order𝑋, and so there is an ordinal 𝛼
such that we can write 𝑋 as {𝑥𝑖; 𝑖 < 𝛼}. The least such ordinal is what we call the cardinality of 𝑋
(and there must be a least one, as the ordinals are well-ordered).

Note, then, that every natural number is a cardinal. For infinite cardinalities, and assuming theAxiom
ofChoice (which allows us towell-order the cardinals), wewriteℵ𝑖, where 𝑖 is an ordinal. So,ℵ0 is the
smallest infinite cardinality (countably infinite), andℵ1 is the smallest uncountable cardinality.

And, we can call a set𝑋 countable if and only if |𝑋| ≤ ℵ0, and uncountable otherwise.

Sometimes we writeℵ0 as 𝜔 (or 𝜔0) andℵ1 as 𝜔1.

We are now ready to see Infinitary Logics.

3.3 Infinitary Logic
Infinitary Logics are a generalisation of First-Order Logic (and are obviously Orthodox –we shall not
prove this fact; we also shall not prove that they are Logics, as they are obviously so: we can easily
expand our proofs for First-Order Logic). Infinitary Logics allow for infinite conjunctions and dis-
junctions of formulæ, rather than our finite conjunctions and disjunctions in First-Order Logic. We
define an Infinitary Logic given a cardinal. This cardinal tells us how big of a conjunction or disjunc-
tion we can form. Later on, we shall see that Infinitary Logics are more powerful than First-Order
Logic, in that they can express more properties of structures (a notion that will be definedmore expli-
citly later on).

We take our definition largely from [Vää11, pp. 157–8]. We writeℒ𝜅,𝜔 for the Infinitary Logic which
allows conjunctions and disjunctions of less than size 𝜅, for an infinite ordinal 𝜅 > 𝜔. This is why we
write ℒ𝜔,𝜔 for First-Order Logic, because we are only allowed conjunctions and disjunctions of size
less than 𝜔 = ℵ0; i.e., finite conjunctions and disjunctions.

We will now define our formulæ and sentences; our terms and atomic formulæ are the same as in
ℒ𝜔,𝜔.
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Definition 3.3.1. Let 𝜅 > ℵ0 be a cardinal, and 𝜏 a vocabulary. Then, the formulæ of ℒ𝜅,𝜔 given the
vocabulary 𝜏 is the smallest set containing all of the formulæ of First-Order Logic (given 𝜏) as well as:

• if 𝑋 is a set of ℒ𝜅,𝜔(𝜏)-formulæ of cardinality less than 𝜅, then⋀𝜙∈𝛸 𝜙 is a ℒ𝜅,𝜔(𝜏)-formula;
and

• if𝑋 is a set ofℒ𝜅,𝜔(𝜏)-formulæ of cardinality less than 𝜅, then⋁𝜙∈𝛸 𝜙 is aℒ𝜅,𝜔(𝜏)-formula.

We can define free and bound variables as in First-Order Logic, and, just like in First-Order Logic, a
ℒ𝜅,𝜔(𝜏)-sentence is aℒ𝜅,𝜔(𝜏)-formula with no free variables.

We can now give our definition of satisfaction in Infinitary Logics.

Definition 3.3.2. Given a cardinal 𝜅 > ℵ0, the Infinitary Logicℒ𝜅,𝜔 is the functionℒ𝜅,𝜔, that returns
the set of sentences of the Infinitary Logic ℒ𝜅,𝜔, given a vocabulary 𝜏, together with the relation ⊨ℒ𝜅,𝜔
between structures and ℒ𝜅,𝜔-sentences, which is defined, inductively, in the same way as First-Order
Logic (for a vocabulary 𝜏, a ℒ𝜅,𝜔-sentence 𝜙 and a 𝜏-structure𝔐), but with the following additional
cases:

• if 𝜙 is of the form⋁𝜓∈𝛸 𝜓, then𝔐 ⊨ℒ𝜅,𝜔 𝜙 if and only if, for some 𝜓 ∈ 𝑋,𝔐 ⊨ℒ𝜅,𝜔 𝜓; and

• if 𝜙 is of the form⋀𝜓∈𝛸 𝜓, then𝔐 ⊨ℒ𝜅,𝜔 𝜙 if and only if, for every 𝜓 ∈ 𝑋,𝔐 ⊨ℒ𝜅,𝜔 𝜓.

Assuming the Axiom of Choice, consider ℵ1 (which we shall call 𝜔1 for now), the first uncountable
cardinal, and the first cardinal after ℵ0; we will consider the logic ℒ𝜔1,𝜔, which allows for countably-
infinite conjunctions and disjunctions. Consider 𝜏 = {⋅, <, 1}, the language of Ordered Groups, and
consider the 𝜏-structure ⟨ℤ; +, <, 0⟩ (the additive Group with the usual ordering of integers), which
we shall denote𝔐. Define 𝑋, a set of ℒ𝜔1,𝜔(𝜏)-formulæ to be the set, 𝑋 ≔ {𝑥𝑖; 0 ≤ 𝑖 < 𝜔}, where
each 𝑥𝑖 is defined as:

𝑥𝑖 ≔ (
𝑖 + 1 times
⎴𝑦⋅𝑦 ⋅ ⋯ ⋅ 𝑦) = 1.

Define 𝜙 ≔ ∃𝑦(¬(𝑦 = 1) ∧⋁𝜓∈𝛸 𝜓(𝑦)); we will consider whether𝔐 ⊨ℒ𝜔1,𝜔 𝜙.

𝔐 ⊨ℒ𝜔1,𝜔 𝜙,

if and only if

exists𝑚 ∈ Dom(𝔐)with𝔐⊔⟨Dom(𝔐);𝑚⟩ ⊨ℒ𝜔1,𝜔 ¬(𝑐 = 1) and𝔐⊔⟨Dom(𝔐);𝑚⟩ ⊨ℒ𝜔1,𝜔 ⋁
𝜓∈𝛸

𝜓(𝑐),

for some constant 𝑐 ∉ 𝜏, which happens if and only if, for some 𝜓 ∈ 𝑋,

𝔐⊔ ⟨Dom(𝔐);𝑚⟩ ⊨ℒ𝜔1,𝜔 ¬(𝑐 = 1) and𝔐⊔ ⟨Dom(𝔐);𝑚⟩ ⊨ℒ𝜔1,𝜔 𝜓(𝑐),

which clearly does not happen, as the only element of the domain satisfying any𝜓 in𝑋 is the identity,
but we must choose a non-identity object; hence,

𝔐 ⊭ℒ𝜔1,𝜔 𝜙.

It can easily be seen that Infinitary Logics are indeed Logics, and, more specifically, are Orthodox
Logics: our arguments for First-Order Logic can easily be extended. It is also easy to see that, for each
cardinal 𝜅 ≥ ℵ0,ℒ𝜔,𝜔 ≤ ℒ𝜅,𝜔: just choose the corresponding sentence of ℒ𝜔,𝜔.
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One final note on this section, the second cardinal; i.e., the ‘𝜔’ in ‘ℒ𝜅,𝜔’ represents the maximum al-
lowed length of a sequence of quantifiers: in our definition, Infinitary Logics, and First-Order Logic
only allow finitely many quantifiers in a row in a sentence. However, we could, if desired allow infin-
itely many, for different cardinalities.

In the next section, we shall see some properties of First-Order Logic, that are of interest. We shall also
examine whether Infinitary Logics share these properties.

4 Properties of Logics
Before we continue, we shall quickly meet two definitions, which we shall use frequently from here
on.

Definition 4.0.1. Letℒ be a Logic, and 𝜏 a vocabulary. We say that a sentence 𝜙 ∈ ℒ(𝜏) is satisfiable
if and only if there exists a 𝜏-structure𝔐 such that

𝔐 ⊨ℒ 𝜙.

If 𝜙 is not satisfiable, we say that 𝜙 is unsatisfiable.

We can generalise Definition 4.0.1, to deal with satisfiability of sets.

Definition 4.0.2. We say that a set of sentences 𝑋 ⊆ ℒ(𝜏) is satisfiable if and only if there exists a
𝜏-structure𝔐 such that, for each 𝜙 ∈ 𝑋,

𝔐 ⊨ℒ 𝜙.

And, if𝑋 is not satisfiable, we say that𝑋 is unsatisfiable.

We are now ready to proceed, and in this section, we shall engage more with Abstract Model Theory:
we will define some properties of Logics, and prove that First-Order Logic satisfies these properties.
The first is Compactness, which tells us that to prove that a set of sentences of a given Logic (given
a vocabulary) is satisfiable, we only need to prove that every finite subset of the set is satisfiable. The
second is the Löwenheim-Skolem-Tarski Property, which tells us that if a sentence of a given Logic
𝜙 (given a vocabulary 𝜏) is true in a 𝜏-structure with an infinite domain, then it is possible to find a
𝜏-structure whose domain has cardinality 𝜅 (for any infinite cardinal 𝜅) and such that 𝜙 is also true
(according to the Logic in question) in that 𝜏-structure.

A possible project, then, in Abstract Model Theory, is to see which Logics have these properties, and
perhaps, even prove a general statement providing sufficient and necessary conditions for Logics to
have these properties.

We shall undertake a slightly different project: we shall see that Lindström’s Theorem characterises
First-Order Logic as the strongest Logic (in terms of expressibility; which is defined in the next sec-
tion) which has both the Compactness and Löwenheim-Skolem-Tarski Properties (in fact, we prove
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a stronger result, as we prove it for weaker versions of Compactness and Löwenheim-Skolem-Tarski,
both of which we define in this section).

We shall also examine Infinitary Logics in this section, in relation to Compactness and Löwenheim-
Skolem-Tarski. I take the definitions in this section from [Ebb16, pp. 31–32], and proofs are attrib-
uted as appropriate.

4.1 Compactness
Definition 4.1.1. Let ℒ be a logic. We say ℒ has the Compactness Property if and only if for any
vocabulary 𝜏we have that a set of sentences𝑋 ⊆ ℒ(𝜏) is satisfiable if and only if every finite subset of
𝑋 is satisfiable.

Theorem 4.1.2. First-Order Logic has the Compactness Property.

Proof: adapted from PY4612 Advanced Logic. We assume the Soundness and Completeness The-
orem of First-Order Logic6, which says that there is a proof-system for First-Order Logic so that
𝑋 ⊨ℒ𝜔,𝜔 𝜙7 if and only if there is a finite proof from 𝑋 to 𝜙 (where the details of “finite proof” are
omitted here). So, 𝜙 can be proved in our finite proof system, from𝑋 if and only if it can be proved
from a finite subset of 𝑋. It then follows, by Soundness and Completeness, that there exists a finite
subset𝑋′ of𝑋 such that𝑋 ⊨ℒ𝜔,𝜔 𝜙 if and only if𝑋

′ ⊨ℒ𝜔,𝜔 𝜙.

By our definition of satisfiability, we know that 𝑌 ⊆ ℒ𝜔,𝜔(𝜏) is satisfiable if and only if there is a 𝜏-
structure𝔐 such that𝔐 ⊨ℒ𝜔,𝜔 𝑌, but then, it is clear that 𝑌 ⊭ℒ𝜔,𝜔 ⊥, as𝔐 ⊭ℒ𝜔,𝜔 ⊥, by definition. So,
by the above, there is a finite subset𝑋′ of𝑋 such that𝑋 ⊨ℒ𝜔,𝜔 ⊥ if and only if𝑋

′ ⊨ℒ𝜔,𝜔 ⊥. I.e., there is
a finite subset𝑋′ of𝑋 such that𝑋 is satisfiable if and only if𝑋′ is satisfiable. a fortiori, if every finite
subset of𝑋 is satisfiable, then so is𝑋.

Clearly, 𝑋 ⊨ℒ𝜔,𝜔 𝑋
′ for any finite subset 𝑋′ of 𝑋, and so if 𝑋 is satisfiable, so is every finite subset of

𝑋. �

We can define more fine-grained versions of Compactness:

Definition 4.1.3. Letℒbe a logic. Given a cardinal 𝜅, we say thatℒhas the 𝜅-Compactness Property if
and only if for any vocabulary 𝜏, we have that a set of sentences𝑋 ⊆ ℒ(𝜏), where |𝑋| ≤ 𝜅, is satisfiable
if and only if every finite subset of𝑋 is satisfiable.

Sometimes, instead of saying ℵ0-Compactness, we say 𝜔-Compactness, or Countable Compactness.
It is clear that a Logic has theCompactness Property if and only if, for any infinite cardinal 𝜅, the given
Logic has the 𝜅-Compactness Property. And, so we deduce that First-Order Logic is 𝜅-Compact (that
is, has the 𝜅-Compactness Property) for any infinite cardinal 𝜅.

A natural question one might ask, given our new definition, from the perspective of an Abstract
Model Theorist, is whether it is true that every Orthodox Logic has the Compactness Property (or
𝜅-Compactness for some cardinal 𝜅). We can show that it is not the case that everyOrthodoxLogic has

6See PY4612 Advanced Logic for a proof.
7This notation means that if 𝛸 ∪ {𝜙} ⊆ ℒ𝜔,𝜔(𝜏), then in every 𝜏-structure𝔐 such that𝔐 ⊨ℒ𝜔,𝜔 𝛸, we also have

𝔐 ⊨ℒ𝜔,𝜔 𝜙.
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the𝜔-Compactness Property (and consequently theCompactness Property), with a counter-example:
Infinitary Logic. We can see that 𝜔-Compactness fails for any Infinitary Logic.

Theorem 4.1.4 ([Hod97, p. 127]). No Infinitary Logic has the 𝜔-Compactness Property.

Proof: let 𝜅 be such that 𝜅 > ℵ0, and let 𝜏 = {𝑐𝑖; 0 ≤ 𝑖 < 𝜔}, where each 𝑐𝑖 is a constant symbol. Then,
consider𝑋 ⊆ ℒ𝜅,𝜔(𝜏) defined as

𝑋 ≔ {¬(𝑐0 = 𝑐1), ¬(𝑐0 = 𝑐2), ¬(𝑐0 = 𝑐3), …}.

If we add another sentence to 𝑋 to obtain 𝑋′ ≔ 𝑋 ∪ {⋁0<𝑖<𝜔 𝑐0 = 𝑐𝑖}, then we can see that any
finite subset 𝛤 of𝑋′ is satisfiable: define 𝐶 ≔ {𝑐𝑖; 𝑐𝑖 ≠ 𝑐0 and 𝑐𝑖 appears in a sentence of 𝛤}, then any
𝜏-structure which interprets 𝑐0 to a fixed element of the domain (say 𝑚) and maps each 𝑐𝑖 ∈ 𝐶 to a
distinct element of the domain (excluding 𝑚) satisfies 𝛤; and this is possible if the structure has an
infinite domain, so we conclude that every finite subset of𝑋′ is satisfiable.

But, we can see that𝑋′ is obviously not satisfiable, hence 𝜔-Compactness for ℒ𝜅,𝜔 must fail, for oth-
erwise, we would be able to conclude that𝑋′ is satisfiable. �

It follows that no Infinitary Logic has theCompactness Property. This is interesting, because it shows
us that just by adding infinitely long disjunctions to First-Order Logic, we would have to give up the
Compactness Property.

4.2 Löwenheim-Skolem-Tarski
The Compactness Property tells us something about sets of sentences in a Logic; our next result tells
us something about the structures, that satisfy certain sentences, themselves (although this is still in
regards to the Logic, for satisfaction is Logic-relative).

Definition 4.2.1. Let ℒ be a Logic, and 𝜅 an infinite cardinal. We say that ℒ has the 𝜅-Downward-
Löwenheim-Skolem-Tarski Property if and only if for any (countable8) vocabulary 𝜏, we have that for
any 𝜙 ∈ ℒ(𝜏) that if there exists a 𝜏-structure𝔐 such that𝔐 ⊨ℒ 𝜙 and |Dom(𝔐)| ≥ 𝜅, then there is
a 𝜏-structure𝔑 such that𝔑 ⊨ℒ 𝜙, andℵ0 ≤ |Dom(𝔐)| ≤ 𝜅.

Definition 4.2.2. Let ℒ be a Logic, and 𝜅 an infinite cardinal. We say that ℒ has the 𝜅-Upward-
Löwenheim-Skolem-Tarski Property if and only if for any (countable9) vocabulary 𝜏, we have that for
any 𝜙 ∈ ℒ(𝜏) that if there exists a 𝜏-structure𝔐 such that𝔐 ⊨ℒ 𝜙 and ℵ0 ≤ |Dom(𝔐)| ≤ 𝜅, then
there is a 𝜏-structure𝔑 such that𝔑 ⊨ℒ 𝜙, and |Dom(𝔐)| ≥ 𝜅.

Again, we have generalised versions of these definitions:

Definition 4.2.3. Let ℒ be a Logic. Then, we say that ℒ has the Downward-Löwenheim-Skolem-
Tarski Property if and only if, for all infinite cardinals 𝜅,ℒ has the 𝜅-Downward-Löwenheim-Skolem-
Tarski Property.

8Our definition relies heavily on the vocabulary being countable.
9Again, this is important.
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Definition 4.2.4. Letℒ be a Logic. Then, we say thatℒ has theUpward-Löwenheim-Skolem-Tarski
Property if and only if, for all infinite cardinals 𝜅, ℒ has the 𝜅-Upward-Löwenheim-Skolem-Tarski
Property.

Theorem 4.2.5. First-Order Logic has the Downward Löwenheim-Skolem-Tarski Property.

Sketch of proof: see PY4612 Advanced Logic, where this is proved by means of a construction used in
the proof of Completeness. In fact, what is proved is that First-Order Logic has the ℵ0-Downward-
Löwenheim-Skolem-Tarski Property. But, this (obviously) implies the stronger claim that First-Order
Logic has the Downward-Löwenheim-Skolem-Tarski Property. �

And, so, for any infinite cardinal𝜅, First-OrderLogichas the𝜅-Downward-Löwenheim-Skolem-Tarski
Property. It is also true that First-Order Logic has the Upward-Löwenheim-Skolem-Tarski Prop-
erty.

Theorem 4.2.6. First-Order Logic has the Upward-Löwenheim-Skolem-Tarski Property.

Sketch of proof: (based on the proof given in [Hod97, p. 127]). Let 𝜅 be an infinite cardinal, and 𝜏 a
(countable) vocabulary. Let 𝜙 ∈ ℒ𝜔,𝜔(𝜏) be such that there exists a 𝜏-structure𝔐 with𝔐 ⊨ℒ𝜔,𝜔 𝜙,
andℵ0 ≤ |Dom(𝔐)| ≤ 𝜅.

We expand the vocabulary 𝜏 be adding 𝜅-“many” new constants to 𝜏, and call the resulting vocabulary
𝜎: that is, 𝜏 ⊆ 𝜎 and |Const(𝜎 ⧵ 𝜏)| = 𝜅. Note that 𝜎 is not necessarily countable (𝜎 is countable if
and only if 𝜅 = ℵ0).

Then, we define a new set of sentences𝑋 ⊆ ℒ𝜔,𝜔(𝜎):

𝑋 ≔ {¬(𝑐1 = 𝑐2); 𝑐1 ≠ 𝑐2 and 𝑐1, 𝑐2 ∈ Const(𝜎 ⧵ 𝜏)}.

We then show that the set ofℒ𝜔,𝜔(𝜎)-sentences {𝜙}∪𝑋 is satisfiable, using the Compactness Property
of First-Order Logic. That is, we show that every finite subset of {𝜙} ∪ 𝑋 is satisfiable, and then it
follows that the entire set is satisfiable.

To see that every finite subset is satisfiable, note that any finite subset𝑋′ of𝑋 contains at most finitely
many constant symbols, then, we can expand our 𝜏-structure𝔐 into a 𝜎-structure, by interpreting
each of the finitely many constant symbols in 𝑋′ as distinct elements, and all the (infinitely many)
others that do not appear in our finite subset𝑋′ of𝑋 to all be the same element of Dom(𝔐). Clearly,
the expanded structure models 𝜙 (as it did originally), and models𝑋′, by construction. Hence, every
finite subset of {𝜙} ∪ 𝑋 is satisfiable, and thus there is a 𝜎-structure𝔑 such that𝔑 ⊨ℒ𝜔,𝜔 {𝜙} ∪ 𝑋, by
the Compactness Property of First-Order Logic.

It then follows that the 𝜏-reduct,𝔑 ↾ 𝜏 of𝔑 is a 𝜏-structure, with |Dom(𝔑 ↾ 𝜏)| ≥ 𝜅, as Dom(𝔑) =
Dom(𝔑 ↾ 𝜏), and because 𝔑 ⊨ 𝑋, which clearly forces a domain of at least 𝜅 elements. Moreover,
because of the reduct property of Logics,𝔑 ↾ 𝜏 ⊨ℒ𝜔,𝜔 𝜙 as𝔑 ⊨ℒ𝜔,𝜔 𝜙, by construction.

Hence,𝔑 ↾ 𝜏 satisfies the requirements of the theorem. �

And hence, First-Order Logic has both properties.
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Corollary 4.2.7. First-Order Logic has both the Downward and the Upward Löwenheim-Skolem-
Tarski Properties.

Proof: This follows immediately from Theorem 4.2.5 and Theorem 4.2.6. �

This tells us that if a sentence 𝜙 of ℒ𝜔,𝜔(𝜏) is true in some 𝜏-structure with an infinite domain, then
there exists a 𝜏-structure, for any infinite cardinal 𝜅, such that 𝜙 is true in it, and it has a domain with
cardinality 𝜅.

Again, returning to comparisonswith InfinitaryLogic, there are versionsof theDownwardLöwenheim-
Skolem-Tarski Property that hold for Infinitary Logics; unfortunately, wewould need to do a lotmore
workwith Infinitary Logics to even state, let alone prove such a result. Details can be found in [Mar16,
pp. 11–12].

We can, however, show that the Upward Löwenheim-Skolem-Tarski Theorem fails for Infinitary Lo-
gics. First, we show that there is a satisfiable sentence (in a specific vocabulary) of Infinitary Logics
that forces any model have a countably-infinite domain.

Lemma 4.2.8. Let ℒ be an Infinitary Logic, and 𝜏 be a vocabulary, consisting of countably-infinitely
many constant symbols. Then there is a satisfiable sentence𝜓 ∈ ℒ(𝜏) such that if𝔐 is a 𝜏-structure, then
𝔐 ⊨ℒ 𝜓 implies |Dom(𝔐)| = ℵ0.

Proof: let 𝜏 be a vocabulary consisting of countably-infinitely many constant symbols 𝑐𝑖, 0 < 𝑖 < 𝜔.
Then define

𝜙 ≔ ∀𝑥( ⋁
0<𝑖<𝜔

(𝑥 = 𝑐𝑖)) ∧ ⋀
0<𝑖<𝜔

𝐷𝑖,

where each𝐷𝑖 is defined in the following way:

𝐷𝑖 ≔ ⋀
0<𝑗<𝜔;𝑗≠𝑖

¬(𝑐𝑖 = 𝑐𝑗).

The left conjunct (of 𝜙) expresses the fact that every element of the domain is interpreted onto by one
of the constant symbols of 𝜏, and the right conjunct (of 𝜙) expresses the fact that no two constant
symbols are interpreted as the same element of the domain. Hence, any 𝜏-structure that satisfies 𝜙
is such that the interpretation of all the constant symbols map to distinct elements of the domain,
and every element of the domain is interpreted by some constant symbol of 𝜏, of which there are
countably-infinite.

This is clearly a possible structure, and so there are models of 𝜙, and, from the above, the domain of
any model of 𝜙must be countably-infinite. �

Now, since the domain of anymodel of 𝜙must be countably-infinite, wemust also have thatUpward-
Löwenheim-Skolem-Tarski does not hold for any Infinitary Logic, as it would imply that we could
findmodels of 𝜙with cardinality greater thanℵ0, but we cannot. In particular, then, for any cardinal
𝜅 > ℵ0, Infinitary Logics do not have the 𝜅-Upward-Löwenheim-Skolem-Tarski Property.
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5 Expressibility and Isomorphisms
This section collates many results which will be useful in our proof of Lindström’s Theorem, in the
next section. In the first subsection, we also introduce the concept of “expressibility”: we say that a
property of structures is expressible in a logicℒ (given a vocabulary 𝜏) if and only if there is a sentence
of ℒ(𝜏) which is modelled in only and all those 𝜏-structures with the property in question. For ex-
ample, the property of “being a structure” is expressible in First-Order Logic (given any vocabulary),
because ¬⊥ is true in every structure, and every structure (and only structures) are structures. An-
other example, given the vocabulary of Groups 𝜏, the property of “being a Group” is expressible in
First-Order Logic, because any 𝜏-structure satisfying the Group axioms (as standardly formalised in
First-Order Logic) is a Group (and only such structures are Groups). In the second subsection, we
prove some results about structures, isomorphisms, and partial isomorphisms, which will be useful in
our final section on Lindström’s Theorem.

5.1 Expressibility
Having seen some properties that are expressible in First-Order Logic, we can now show that some
properties are not expressible. We canuse theCompactness andLöwenheim-Skolem-Tarski Properties
of First-Order Logic to this end. Our examples here shall be about cardinality.

Our first example of a property of structures that is inexpressible in First-Order Logic is that of “being
a finite structure”. We shall show that this is in expressible, by using theCompactness Property.

Theorem 5.1.1. There is no vocabulary 𝜏 such that there exists a 𝜙 ∈ ℒ𝜔,𝜔(𝜏) such that𝔐 ⊨ℒ𝜔,𝜔 𝜙 if
and only if |Dom(𝔐)| < ℵ0.

10

Proof: suppose otherwise, that𝜙 is such a sentence for somevocabulary𝜏. Then consider the following
set𝑋 ⊆ ℒ𝜔,𝜔(𝜏):

𝑋 ≔ {𝜙, ¬∃𝑦1∀𝑥(𝑦1 = 𝑥), ¬∃𝑦1∃𝑦2∀𝑥(¬(𝑦1 ≠ 𝑦2) ∧ (𝑦1 = 𝑥 ∨ 𝑦2 = 𝑥)), …}.

So that the first sentence after 𝜙 expresses the fact that there is not precisely one thing in the domain,
the second sentence after 𝜙 expresses the fact that there is not precisely two things in the domain, and
so on.

We can see that any finite subset of 𝑋 is satisfiable: take any 𝜏-structure which has a finite domain
bigger than which any sentence of the finite subset prevents. Hence, by the Compactness Property
(Countable Compactness, in particular), we see that all of𝑋 is satisfiable: let𝔐 be such a 𝜏-structure.
But, as every sentence in𝑋must be true in𝔐, which means that |Dom(𝔐)| ≠ 1, |Dom(𝔐)| ≠ 2,
&c., by each sentence of 𝑋 that is not 𝜙. But, as 𝜙 also is true in𝔐, by construction, the domain of
𝔐 is finite, but there is no possible choice for this (remember, we disallow structures with an empty
domain), hence we must conclude that no such sentence 𝜙 can exist. �

However, when we move to Infinitary Logics, we can express such a property of structures (and, in
fact, there is such a sentence, irregardless of the vocabulary).

Theorem 5.1.2. Ifℒ is an Infinitary Logic, and 𝜏 a vocabulary, then there is a sentence𝜓 ∈ ℒ(𝜏) such
that if𝔐 is a 𝜏-structure, then𝔐 ⊨ℒ 𝜓 if and only if |Dom(𝔐)| < ℵ0.

10This is an example from PY4612.
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Proof: let 𝜓 be
𝜓 ≔ ⋁

0<𝑖<𝜔
𝐶𝑖,

where each 𝐶𝑖 expresses that there are precisely 𝑛 elements (these are the un-negated versions of the
sentences in𝑋 in Theorem 5.1.1, other than 𝜙, of course).

Clearly, then, this expresses that there is precisely 1 element in the domain, or there are precisely 2
elements in the domain, or 3, and so on.

Hence, there must be a finite number of elements in the domain of any 𝜏-structure satisfying 𝜓. �

This is one case in which we can say that Infinitary Logics are more expressive than First-Order Lo-
gic.

We know, from our proofs of Theorem 5.1.1 and Theorem 5.1.2 that First-Order Logic can express
that a structure has precisely 𝑛 elements, for any finite 𝑛 > 0. However, we know, fromTheorem5.1.1
thatwe cannot express that a structure is finite, without reference to specific cardinality, in First-Order
Logic. As First-Order Logic is an Orthodox Logic, it follows that there is no sentence expressing that
a structure is not-finite either (for if there was, then the negation of “not-finite” would be “finite”).
That is, there is no sentence true in only and all those structure with an infinite domain. We shall see,
in our next example that, in First-Order Logic, we also cannot express that the domain of the structure
is countably infinite (or in fact, that it has cardinality 𝜅 for any infinite cardinal 𝜅). And, as First-Order
Logic is an Orthodox Logic, we also cannot express the fact that a structure does not have cardinality
𝜅 for any infinite cardinal 𝜅.

Theorem5.1.3. let 𝜅 be an infinite cardinal, and 𝜏a vocabulary. Then there is no sentence𝜙 ∈ ℒ𝜔,𝜔(𝜏)
such that, for any 𝜏-structure𝔐,

𝔐 ⊨ℒ𝜔,𝜔 𝜙 if and only if |Dom(𝔐)| = 𝜅.

Proof: Let 𝜅 be an infinite cardinal, and 𝜏 a vocabulary. Then, if 𝜙 ∈ ℒ𝜔,𝜔(𝜏)were to be such that for
any 𝜏-structure𝔐,

𝔐 ⊨ℒ𝜔,𝜔 𝜙 if and only if |Dom(𝔐)| = 𝜅,

then, as there certainly are 𝜏-structures with domain of size 𝜅, any of these structures must satisfy
𝜙. But then, by the Löwenheim-Skolem-Tarski Property of First-Order Logic, we can find another
structure𝔑, with a domain of cardinality 𝜆, where 𝜆 ≠ 𝜅 and 𝜆 ≥ ℵ0, and𝔑 ⊨ℒ𝜔,𝜔 𝜙, contradicting
our assumption. �

Seeing what properties a Logic can express (given certain vocabularies) is one method of categorising
them (although a very coarse method), and so, this is, in some sense, a part of Abstract Model The-
ory.

5.1.1 Abstract Model Theory

In this part, we will do some “real Abstract Model Theory”, by showing facts about all Orthodox
Logics (which are typically the subject of study in Abstract Model Theory) that extend First-Order
Logic. The proofs, and their statements, in this part are all reconstructed from the proof of Lind-
ström’s Theorem given in [Flu16] (many of which are implicitly assumed) – this continues until part
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5.2.1. We begin by showing that if there is a sentence that First-Order Logic cannot express in an Or-
thodox Logic, then there must be at least one structure in which that sentence is true. To do that, we
begin by defining these notions formally.

Definition 5.1.4. Letℒ ≥ ℒ𝜔,𝜔 be a Logic, 𝜏 a vocabulary, and𝜓 ∈ ℒ(𝜏). We say𝜓 is not equivalent
to any First-Order sentence if there is no 𝜙 ∈ ℒ𝜔,𝜔(𝜏), such that for all 𝜏-structures𝔐,

𝔐 ⊨ℒ 𝜓 if and only if 𝔐 ⊨ℒ 𝜙.

Now,wewill show that any sentence of anOrthodoxLogic, which is strictly stronger than First-Order
Logic, that is not equivalent to a First-Order sentence, must be satisfiable.

Theorem 5.1.5. Let ℒ ≥ ℒ𝜔,𝜔 be an Orthodox Logic, and 𝜏 a vocabulary. Then, if 𝜓 ∈ ℒ(𝜏) is not
equivalent to any First-Order sentence, then 𝜓 is satisfiable.

Proof: suppose otherwise: that 𝜓 is not satisfiable. Then, for every 𝜏-structure𝔐, we have

𝔐 ⊭ℒ 𝜓;

however, we also have
𝔐 ⊭ℒ ⊥.

Hence, for every 𝜏-structure𝔐,

𝔐 ⊨ℒ 𝜓 if and only if 𝔐 ⊨ℒ ⊥,

which contradicts our assumption that 𝜓 was not equivalent to any First-Order sentence. Thus, we
conclude that 𝜓 is satisfiable. �

Wehave nowdone our first bit of AbstractModel Theory: we have proved a result about all Orthodox
Logics stronger than First-Order Logic (and in fact all those sentences which make it stronger than
First-Order Logic). This is a very general statement, and so is truly part of Abstract Model Theory.
We shall continue in this way, proving some results about these kinds of logic, in preparation for the
big “foundational” result of Abstract Model Theory: Lindström’s Theorem.

Theorem 5.1.6. Letℒ ≥ ℒ𝜔,𝜔 be anOrthodoxLogic, 𝜏 a vocabulary,𝜓 ∈ ℒ(𝜏) be not equivalent to any
First-Order sentence, and 𝜙 ∈ ℒ𝜔,𝜔(𝜏). Then, either 𝜓 ∧ 𝜙 or 𝜓 ∧ ¬𝜙 is not equivalent to a First-Order
sentence.

Proof: suppose 𝜓 ∧ 𝜙 is equivalent to 𝜒 ∈ ℒ𝜔,𝜔(𝜏). Then, for each 𝜏-structure𝔐,

𝔐 ⊨ℒ 𝜓 ∧ 𝜙 if and only if 𝔐 ⊨ℒ 𝜒.

Suppose also that 𝜓 ∧ ¬𝜙 is equivalent to 𝜒′ ∈ ℒ𝜔,𝜔(𝜏). So, for each 𝜏-structure𝔑,

𝔑 ⊨ℒ 𝜓 ∧ ¬𝜙 if and only if 𝔑 ⊨ℒ 𝜒
′.

Let 𝔒 be a 𝜏-structure. Then, by how disjunction and conjunction behave in Orthodox Logics, we
have

𝔒 ⊨ℒ 𝜒 ∨ 𝜒
′ ⇒ 𝔒 ⊨ℒ 𝜓.
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Suppose that𝔒 ⊨ℒ 𝜓. Then, as 𝜙 ∈ ℒ𝜔,𝜔(𝜏), we must have𝔒 ⊨ℒ 𝜙 or𝔒 ⊨ℒ ¬𝜙. In either case, we
can conclude𝔒 ⊨ℒ 𝜒 ∨ 𝜒

′, asℒ is an Orthodox Logic.

Thus, we have shown that 𝜓 is equivalent to 𝜒 ∨ 𝜒′ ∈ ℒ𝜔,𝜔(𝜏), which is a contradiction. So, we
conclude that we cannot have both 𝜓 ∧ 𝜙 and 𝜓 ∧ ¬𝜙 equivalent to a First-Order sentence. �

In Theorem 5.1.6, we cannot remove the ‘or’ condition. That is, we cannot replace the final sentence
with ‘Then, 𝜓 ∧ 𝜙 is not equivalent to a First-Order sentence’. To see this, note that after one ap-
plication, of Theorem 5.1.6, we have a sentence 𝜓 ∧ 𝜙 such that it is not equivalent to a First-Order
sentence, but then, by taking 𝜙′ ≔ ¬𝜙, we could apply Theorem 5.1.6 once again to conclude that
𝜓 ∧ 𝜙 ∧ 𝜙′ is not equivalent to any First-Order sentence. However, it is obvious that it can never be
satisfied, contradicting the fact that if a sentence is not equivalent to any First-Order sentence, it is
satisfiable (Theorem 5.1.5).

Also, we cannot replace the final sentence with ‘Then, 𝜓 ∧ ¬𝜙 is not equivalent to a First-Order sen-
tence’, as we can run the same argument with ‘𝜙’ replaced by ‘¬𝜙’. However, we can glean a little
more information: if the First-Order sentence does not ‘interfere’ with the non-First-Order sentence,
then we can conclude that the First-Order sentence also does not ‘interfere’ with the negation of the
non-First-Order sentence. This is proved next.

Theorem 5.1.7. Let 𝜏 be a vocabulary, and let ℒ ≥ ℒ𝜔,𝜔 be an Orthodox Logic. Then, let 𝜓 ∈ ℒ(𝜏)
be not equivalent to any First-Order sentence, and 𝜙 ∈ ℒ𝜔,𝜔(𝜏) be satisfiable. Then, if 𝜓 ∧ 𝜙 is not
equivalent to any First-Order sentence, nor is ¬𝜓 ∧ 𝜙.

Proof: assume the contrary; so, there exists 𝜒 ∈ ℒ𝜔,𝜔(𝜏) such that for any 𝜏-structure 𝔐, we have
𝔐 ⊨ℒ ¬𝜓 ∧ 𝜙 if and only if 𝔐 ⊨ℒ 𝜒. Now, let 𝔐 be an arbitrary 𝜏-structure. Then, if we have
𝔐 ⊨ 𝜙 ∧ ¬𝜒, we must have, asℒ is Orthodox,𝔐 ⊨ℒ 𝜙 ∧ ¬(¬𝜓 ∧ 𝜙); i.e.,𝔐 ⊨ℒ 𝜓 ∧ 𝜙.

Suppose𝔐 ⊨ℒ 𝜓∧𝜙, where𝔐 is a 𝜏-structure. Then, we also have, asℒ is Orthodox,𝔐 ⊨ℒ 𝜙∧(𝜓∨
¬𝜙); i.e.,𝔐 ⊨ℒ 𝜙 ∧ ¬𝜒.

It is clear that 𝜙 ∧ ¬𝜒 is a First-Order sentence, as both 𝜙 and ¬𝜒 are. So, we have shown that 𝜓 ∧ 𝜙 is
equivalent to a First-Order sentence. Hence, our assumption must be false. Thus, we conclude that
if 𝜓 ∧ 𝜙 is not equivalent to any First-Order sentence, nor is ¬𝜓 ∧ 𝜙. �

We can generalise Theorem 5.1.6.

Theorem 5.1.8. Let ℒ ≥ ℒ𝜔,𝜔 be an Orthodox Logic, 𝜏 a vocabulary, 𝑋 ⊆ ℒ(𝜏) be satisfiable, and
𝜙 ∈ ℒ𝜔,𝜔(𝜏) be satisfiable. Then, either𝑋 ∪ {𝜙} or𝑋 ∪ {¬𝜙} is satisfiable.

Proof: suppose that 𝑋 ∪ {𝜙} is unsatisfiable. Then, choose a 𝜏-structure𝔐 such that𝔐 ⊨ℒ 𝜙. We
can do this because we supposed that 𝜙was satisfiable.

But, because we supposed that 𝑋 ∪ {𝜙} was unsatisfiable, we must have that𝔐 ⊭ℒ 𝑋, as otherwise
𝑋 ∪ {𝜙}would be satisfied by𝔐.

As𝔐was arbitrarily chosen, we can conclude that for any 𝜏-structures𝔐,

if 𝔐 ⊨ℒ 𝜙, then 𝔐 ⊭ℒ 𝑋.



32 5 EXPRESSIBILITY AND ISOMORPHISMS

And, so, by contraposition,

𝔐 ⊨ℒ 𝑋 ⇒ 𝔐 ⊭ℒ 𝜙
⇒ 𝔐 ⊨ℒ ¬𝜙, asℒ is Orthodox.

But, if, for some 𝜏-structure𝔐, we have𝔐 ⊨ℒ 𝑋 and𝔐 ⊨ℒ ¬𝜙, then we have shown that𝑋 ∪ {¬𝜙}
is satisfiable.

On the other hand, if we assume there is no 𝜏-structure𝔐 such that𝔐 ⊨ℒ 𝑋 and𝔐 ⊨ℒ ¬𝜙 (i.e.,
𝑋 ∪ {¬𝜙} is unsatisfiable), then because 𝑋 is satisfiable, we have contradicted the claim that for any
𝜏-structure𝔐,

if 𝔐 ⊨ℒ 𝑋, then 𝔐 ⊨ℒ ¬𝜙.

Hence, wemust deny our assumption that𝑋∪ {𝜙} is unsatisfiable. Thus, either𝑋∪ {𝜙} or𝑋∪ {¬𝜙}
must be satisfiable. �

As with Theorem 5.1.6, we also cannot drop the ‘or’ condition in Theorem 5.1.8. It is for the same
reason, as we saw for Theorem 5.1.6. That is, we cannot replace the final sentence of the statement
of Theorem 5.1.8, by ‘Then, 𝑋 ∪ {𝜙} is satisfiable’. For, by one application of Theorem 5.1.8, we
conclude that𝑋∪ {𝜙} is satisfiable. But, we could also use Theorem 5.1.8 to conclude that𝑋∪ {𝜙} ∪
{¬𝜙} is satisfiable. This is clearly false. Again, the same argument runs through with ‘𝜙’ replaced by
‘¬𝜙’.

We now have enough information about Orthodox Logics that extend First-Order Logic for Lind-
ström’s Theorem. But, before we can prove it, we need to see some more information about Iso-
morphisms, and the Back-and-Forth method.

5.2 Isomorphisms and the Back-and-Forth Method

Now, we shall see that in finite structures of a finite vocabulary, we can encode sufficient information
into a single First-Order sentence (of the relevant vocabulary) such that if any two structures (of the
relevant vocabulary) satisfy such a sentence, then they are isomorphic. Wewill conclude from this fact
that isomorphism and elementary equivalence are equal (in finite vocabularies and finite structures),
which we will use in our proof of Lindström’s Theorem. Following that, we will see a generalisa-
tion of “isomorphism”: “partial isomorphism”, and we shall see a useful technique inModel Theory,
called the Back-and-Forth method, which utilises partial isomorphisms, and is used to show that two
countably infinite structures are isomorphic.

Theorem 5.2.1. Let 𝜏 be a finite vocabulary. If𝔐 is a 𝜏-structure, and Dom(𝔐) is finite, then there
is a sentence 𝜙 ∈ ℒ𝜔,𝜔(𝜏) such that𝔐 ⊨ℒ𝜔,𝜔 𝜙 and for any 𝜏-structure𝔑,

if 𝔑 ⊨ℒ𝜔,𝜔 𝜙, then 𝔑 ≅ 𝔐.
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Proof: denote the elements of Dom(𝔐) as {𝑚1, … , 𝑚𝑘}. Then, define

𝜙 ≔ ∃𝑥1 ⋯ ∃𝑥𝑘(
𝑘
⋀
𝑖≠𝑗

𝑥𝑖 ≠ 𝑥𝑗∧

∀𝑥(
𝑘
⋁
𝑖
𝑥 = 𝑥𝑖)∧

⋀
𝑐 ∈ Const(𝜏);
𝜄𝔐(𝑐)=𝑚𝑖

𝑐 = 𝑥𝑖∧

⋀
𝑅 ∈ Rel𝑙(𝜏);

⟨𝑚𝑖1 ,…,𝑚𝑖𝑙⟩∈𝜄𝔐(𝑅)

𝑅𝑥𝑖1 ⋯𝑥𝑖𝑙∧

⋀
𝑅 ∈ Rel𝑙(𝜏);

⟨𝑚𝑖1 ,…,𝑚𝑖𝑙⟩∉𝜄𝔐(𝑅)

¬𝑅𝑥𝑖1 ⋯𝑥𝑖𝑙∧

⋀
𝑓 ∈ Func𝑙(𝜏);

𝜄𝔐(𝑓)(𝑚𝑖1 ,…,𝑚𝑖𝑙)=𝑥𝑗

𝑓(𝑥𝑖1 , … , 𝑥𝑖𝑙) = 𝑥𝑗).

This is clearly a finite sentence, as 𝜏 is finite, and so is the domain of𝔐. Hence, 𝜙 ∈ ℒ𝜔,𝜔(𝜏).

Note that the first two lines encode the fact that the structure has precisely 𝑘 elements, the third line
encodes to which elements each constant symbol “picks out”, the fourth line encodes for which ele-
ments of the domain each relation holds for, the fifth encodes for which elements of the domain each
relation does not hold for, and the final line encodes to where each function maps, given any input-
tuple of elements of the domain. Clearly, these are all facts about𝔐, and so𝔐 ⊨ℒ𝜔,𝜔 𝜙.

Furthermore, we can see that if𝔑 ⊨ℒ𝜔,𝜔 𝜙, then by the first two lines, the domain of𝔑has the same car-
dinality as the domain of𝔐. Then, if we remove the existential quantifiers of 𝜙 to obtain a formula𝜓,
with free variables 𝑥1,…, 𝑥𝑘, and we order Dom(𝔑) so that Dom(𝔑) = {𝑛1, … , 𝑛𝑘}, and𝜓(𝑛1, … , 𝑛𝑘),
then it is clear that𝑚𝑖 ↦ 𝑛𝑖 is an isomorphism between the two structures. �

From this, we can conclude:

Corollary 5.2.2. Let 𝜏 be a finite vocabulary. If𝔐 is a 𝜏-structure, with Dom(𝔐) finite, then for any
𝜏-structure𝔑, we have

𝔐 ≡ 𝔑 if and only if 𝔐 ≅ 𝔑.

Proof: for the forward direction, let 𝜙 be as in Theorem 5.2.1, then𝔐 ⊨ℒ𝜔,𝜔 𝜙 if and only if𝔑 ⊨ℒ𝜔,𝜔 𝜙,
but we know that𝔐 ⊨ℒ𝜔,𝜔 𝜙, and so𝔑 ⊨ℒ𝜔,𝜔 𝜙. Hence,𝔐 ≅ 𝔑.

For the backward direction, note that if𝔐 ≅ 𝔑, then𝔐 and𝔑 agree on all the atomic sentences, and
so when inductively checking for the truth of a sentence of First-Order Logic, we know that all the
atomic sentences will agree, and so any sentence will agree. �

This tells us that for finite vocabularies and structures, isomorphisms and elementary equivalence are
equivalent. So, to show one, we can just show the other.

This does not hold true, in general, for structures with infinite domains (it is difficult to give examples
with the theory developed in this project).
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5.2.1 The Back-and-Forth Method

Finally, we shall introduce the notion of partial isomorphisms and introduce the Back-and-Forth
method, which is a method for demonstrating that there is an isomorphism between countably infin-
ite structures. This is the final piece of theory we need before going on to prove Lindström’s Theorem
in the next section.

Theproofs anddefinitions in this section are edited from[Ebb16, pp. 53–58]. But,Cantor’sTheorem
is expanded from [Hod97, p. 79].

Definition 5.2.3 (Partial Isomorphism). Let 𝜏 be a vocabulary, and 𝔐 and 𝔑 be 𝜏-structures.
Then, we say 𝑝 is a partial isomorphism between 𝔐 and 𝔑 if and only if the following conditions
are satisfied:

• 𝑝 is a partial function11 between Dom(𝔐) and Dom(𝔑);

• 𝑝 is defined on only finitely many elements of Dom(𝔐) (including none);

• 𝑝 is injective (that is, 𝑝(𝑥) = 𝑝(𝑦) ⇒ 𝑥 = 𝑦);

• for each 𝑐 ∈ Const(𝜏), if 𝑝(𝜄𝔐(𝑐)) is defined, then 𝑝(𝜄𝔐(𝑐)) = 𝜄𝔑(𝑐);

• for each positive integer 𝑛, each𝑓 ∈ Func𝑛(𝜏), and each𝑛-tuple (𝑚1, 𝑚2, … , 𝑚𝑛) such that each
element of the tuple has a defined mapping under 𝑝,

𝑝(𝜄𝔐(𝑓)(𝑚1, 𝑚2, … , 𝑚𝑛)) = 𝜄𝔑(𝑓)(𝑝(𝑚1), 𝑝(𝑚2), … , 𝑝(𝑚𝑛));

and

• for each positive integer 𝑛, each 𝑅 ∈ Rel𝑛(𝜏), and each 𝑛-tuple (𝑚1, 𝑚2, … , 𝑚𝑛) such that each
element of the tuple has a defined mapping under 𝑝,

𝜄𝔐(𝑅)𝑚1𝑚2 ⋯𝑚𝑛 if and only if 𝜄𝔑(𝑅)𝑝(𝑚1)𝑝(𝑚2) ⋯ 𝑝(𝑚𝑛).

Informally, a partial isomorphism from a 𝜏-structure𝔐 to a 𝜏-structure𝔑 is an isomorphism (tech-
nically, a 𝜎-isomorphism, where 𝜎 ⊆ 𝜏), which disregards constants that do not appear in its domain,
from a subset of Dom(𝔐) onto its own image (a subset of Dom(𝔑)).

It is useful to note that the empty function is a partial isomorphismbetween any two structures.

Definition 5.2.4 (Partially Isomorphic Structures). Given a vocabulary 𝜏, we say that two 𝜏-
structures 𝔐 and 𝔑 are partially isomorphic if and only if there is a non-empty set 𝐼 consisting of
partial isomorphisms between 𝔐 and 𝔑, such that 𝐼 satisfies both the back property and the forth
property:

• (Forth property) For each 𝑝 ∈ 𝐼 and 𝑚 ∈ Dom(𝔐), there exists a 𝑞 ∈ 𝐼 such that 𝑝 is a
“subfunction” of 𝑞12, and 𝑞 is defined on𝑚.

• (Back property) For each 𝑝 ∈ 𝐼 and 𝑛 ∈ Dom(𝔑), there exists a 𝑞 ∈ 𝐼 such that 𝑝 is a “subfunc-
tion” of 𝑞, and there is some𝑚 ∈ Dom(𝔐) such that 𝑞(𝑚) is defined, and 𝑞(𝑚) = 𝑛.

11Apartial function is exactly like a function, except not every element of the domain has to have a defined image. And
it will be useful to note that the empty function (𝑓 ∶ ∅ → ∅) is always a partial function, even when we expand the
domain and range.

12What we mean by this is that for all 𝑥 such that 𝑝(𝑥) is defined, 𝑞(𝑥) is defined and 𝑝(𝑥) = 𝑞(𝑥).
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Given this definition, we can now show that any two countably-infinite partially isomorphic struc-
tures are isomorphic. Indoing so,wewill havedemonstrated a technique forproving that twocountably-
infinite structure are isomorphic. This is the Back-and-Forth technique. We shall explain it, in full,
and provide an example, after the next theorem.

Theorem 5.2.5. Let 𝜏 be a vocabulary, and let 𝔐 and 𝔑 be partially isomorphic 𝜏-structures with
countably-infinite domains, then𝔐 ≅ 𝔑.

Proof: enumerate (without repeats) Dom(𝔐) as𝑚0, 𝑚1, … and Dom(𝔑) as 𝑛0, 𝑛1, …. Then, let 𝑝0 ∈
𝐼. We will define a sequence of partial isomorphisms 𝑝0, 𝑝1, … such that each 𝑝𝑖 is a “subfunction” of
𝑝𝑖+1 (and, consequently of each 𝑝𝑗 for 𝑗 ≥ 𝑖), by the following:

• if 𝑘 + 1 is odd (and 𝑘 = 2𝑞), then, by the forth property, we can find a 𝑝𝑘+1 in 𝐼 such that 𝑝𝑘 is a
“subfunction” of 𝑝𝑘+1, and 𝑝𝑘+1 is defined on𝑚𝑞; and

• if 𝑘 + 1 is even (and 𝑘 + 1 = 2𝑞), then, by the back property, we can find a 𝑝𝑘+1 in 𝐼 such that 𝑝𝑘
is a “subfunction” of 𝑝𝑘+1, and there is some𝑚 ∈ Dom(𝔐) such that 𝑝𝑘+1(𝑚) is defined, and
𝑝𝑘+1(𝑚) = 𝑛.

We canuse this sequence to induce a𝜏-isomorphismbetween𝔐 and𝔑 as follows: let𝑝 ∶ Dom(𝔐) →
Dom(𝔑) be such that𝑚 ↦ 𝑝𝑖(𝑚), where 𝑖 is the least natural number such that 𝑝𝑖(𝑚) is defined in
our sequence.

We will now show that this is indeed a 𝜏-isomorphism.

• To see injectivity, note that if 𝑝(𝑥) = 𝑝(𝑦), then we know that for some natural numbers 𝑖 and
𝑗, 𝑝𝑖(𝑥) = 𝑝𝑗(𝑦), and so, if, without loss of generality, 𝑖 is the maximum of 𝑖 and 𝑗, then we
know that 𝑝𝑖(𝑥) = 𝑝𝑗(𝑦) = 𝑝𝑖(𝑦), as we have a sequence of “subfunctions”, but, then as these
are partial isomorphisms, 𝑝𝑖 is injective, and so 𝑥 = 𝑦.

• To see surjectivity, let 𝑛𝑘 ∈ Dom(𝔑), then, by construction, there exists some𝑚 ∈ Dom(𝔐)
such that 𝑝2𝑘(𝑚) = 𝑛𝑘, and so we know that 𝑝(𝑚) = 𝑛𝑘, because the 𝑝𝑖s are a sequence of
“subfunctions”.

• To see that “constants map to the corresponding constants”, note that at some point, we will
have met the interpretation of each constant symbol, as 𝑝 is bijective, by the previous two bul-
let points, and when we do, we know that it maps to the interpretation of the corresponding
constant symbol, as each 𝑝𝑖 is a partial isomorphism.

• A similar argument can be applied for relations and functions.

�

The Back-and-Forth method, then is to use Theorem 5.2.5, by showing that two countably-infinite
structures are partially isomorphic.

For example, Cantor proved (although not using this method) that all countable dense linear order-
ings, without endpoints, are isomorphic. Note that all dense linear orderings are infinite, so countable
dense linear orderings are countably-infinite, and also note that the rationals are a countable dense lin-
ear ordering, without endpoints, so this theorem is saying that every countable dense linear ordering
is isomorphic to the rationals. We shall provide a proof using the Back-and-Forth method.
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Theorem 5.2.6 (Cantor). Let 𝜏 = {<}, and let𝔐 and 𝔑 be 𝜏-structures, which are also countable
dense linear orderings, without endpoints. Then,𝔐 ≅ 𝔑.

Proof: we use the Back-and-Forth method, by showing that𝔐 and 𝔑 are partially isomorphic, and
then we conclude the desired result by applying Theorem 5.2.5.

Let 𝐼 be the set of partial isomorphisms between𝔐 and𝔑. We know that the empty function is in 𝐼
and so it is non-empty.

We will show that 𝐼 satisfies the forth property. So, let 𝑝 ∈ 𝐼, and list the elements of Dom(𝔐) on
which 𝑝 is defined in a way such that𝑚1 𝜄𝔐(<) 𝑚2 𝜄𝔐(<) ⋯ 𝜄𝔐(<) 𝑚𝑘, where 𝑘 is the total number of
elements on which 𝑝 is defined (which is finite, by definition). Then, let𝑚 ∈ Dom(𝔐), then choose
𝑛 ∈ Dom(𝔑) such that:

• if𝑚 𝜄𝔐(<) 𝑚1, then 𝑛 𝜄𝔑(<) 𝑝(𝑚1);

• if𝑚𝑘 𝜄𝔐(<) 𝑚, then 𝑝(𝑚𝑘) 𝜄𝔑(<) 𝑛; and

• if𝑚𝑖 𝜄𝔐(<) 𝑚 𝜄𝔐(<) 𝑚𝑖+1, then 𝑝(𝑚𝑖) 𝜄𝔐(<) 𝑛 𝜄𝔐(<) 𝑝(𝑚𝑖+1).

We can justify that it is always possible to find such an 𝑛, because𝔑 is a dense linear ordering, without
endpoints. It follows that if we let 𝑝′ be the same partial function as 𝑝, but also define 𝑝′ to be defined
on 𝑚 so that 𝑝′(𝑚) = 𝑛, then 𝑝′ is also, obviously, a partial isomorphism, by our choice of 𝑛. Thus,
we see that 𝐼 has the forth property.

We can use a very similar argument to demonstrate the back property. �

6 Lindström’s Theorem
We shall now see a proof of Lindström’s theorem. This is an important result in Abstract Model
Theory. The theoremgives a neat characterisation of the expressive power of First-Order Logic. It says
that if any Logic is at least as expressive as First-Order Logic, and satisfies both 𝜔-Compactness, and
has the ℵ0-Downward-Löwenheim-Skolem-Tarski Property, then that Logic must, in fact, be First-
Order Logic. Hence, we know that these properties characterise First-Order Logic, in the sense that
it is the most expressive Logic to have such properties.

Lindström’s Theorem, then, is the foundational result in Abstract Model Theory, because it charac-
terises, completely, First-Order Logic, which is our prime example of a Logic. So, as the field is about
characterising and comparing Logics, Lindström’s Theorem is a very nice result.

The proof proceeds in three steps. In the first step, we show that for 𝜔-Compact Orthodox Logics, at
least as strong as First-Order Logic, each sentence depends on at most finitely many symbols from the
vocabulary.

Then, we show that if we were to extend First-Order Logic with a new, previously inexpressible sen-
tence, and if the resulting Logic were still to have the Countable Compactness Property and the ℵ0-
Downward-Löwenheim-Skolem-Tarski Property (and still be Orthodox), then we would be able to
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find countably-infinite elementarily equivalent structures, one in which our new sentence holds, and
one in which is doesn’t, both with the same domain.

Finally, wewill show that in addition to the properties from the previous paragraph, we can find struc-
tures which are isomorphic in the reduct of the finite fragment of our vocabulary that decides the
truth of our new sentence (which we provedmust exist, by our first step), demonstrating a contradic-
tion.

Hence, we will conclude that First-Order Logic is the strongest Orthodox Logic such that it has
the Countable Compactness Property, and the ℵ0-Downward-Löwenheim-Skolem-Tarski Property.
This is Lindström’s Theorem.

The proofs in this section are based on those given in [Flu16, pp. 79–81], but with many details filled
in.

6.1 The Proof
For this section, we let ⋅⋆ be a renaming (where the vocabulary is apparent from context), such that
the domain and range are disjoint; we also fix ⋅† to be the inverse of ⋅⋆.

We now demonstrate the first result, that in 𝜔-Compact Orthodox Logics, at least as strong as First-
Order Logic, any sentence depends on only a finite fragment of the vocabulary.

Lemma 6.1.1. Let 𝜏 be a vocabulary andℒ ≥ ℒ𝜔,𝜔 anOrthodox Logic with theCountable Compactness
Property. Then, given𝜓 ∈ ℒ(𝜏), there is a finite vocabulary 𝜏0 ⊆ 𝜏 such that for any 𝜏-structures𝔐 and
𝔑,

𝔐 ↾ 𝜏0 ≅ 𝔑 ↾ 𝜏0 ⇒ (𝔐 ⊨ℒ 𝜓 ⇔ 𝔑 ⊨ℒ 𝜓).

Proof: let𝛷 ⊆ ℒ(𝜏 ∪ 𝜏⋆) be

𝛷 ≔ {∀𝑥1 ⋯∀𝑥𝑛(𝑅𝑥1 ⋯𝑥𝑛 ↔ 𝑅⋆𝑥1 ⋯𝑥𝑛); 𝑛 ≥ 1, 𝑅 ∈ Rel𝑛(𝜏)}
∪ {∀𝑥1 ⋯∀𝑥𝑛𝑓(𝑥1, … , 𝑥𝑛) = 𝑓⋆(𝑥1, … , 𝑥𝑛); 𝑛 ≥ 1, 𝑓 ∈ Func𝑛(𝜏)}
∪ {𝑐 = 𝑐⋆; 𝑐 ∈ Const(𝜏)}.

Note, then, that clearly 𝛷 ⊨ℒ 𝜓 ↔ 𝜓⋆ – as 𝛷 specifies completely everything about a structure.
Hence, by Countable Compactness, there is a finite set of sentences𝑋 ⊆ 𝛷 such that

𝑋 ⊨ℒ 𝜓 ↔ 𝜓⋆.

Now, take 𝜎 as the, necessarily finite, set of symbols appearing in sentences in 𝑋 (note that this is a
subset of 𝜏 ∪ 𝜏⋆). Define 𝜎′ ≔ (𝜎 ⧵ 𝜏⋆) ∪ (𝜎 ⧵ 𝜏)†; so, 𝜎′ ⊆ 𝜏 and 𝜎′ is finite.

Then, suppose𝔐 and 𝔑 are 𝜏-structures such that𝔐 ↾ 𝜎′ ≅ 𝔑 ↾ 𝜎′, and we may assume (by the
isomorphism property, as we only care about truth in the models, so we are free to re-arrange things
as we wish, as long as this is preserved) that𝔐 ↾ 𝜎′ = 𝔑 ↾ 𝜎′.

Now, we can see that𝔐 ⊔ 𝔑⋆ ⊨ℒ 𝑋, because𝔐 and 𝔑 agree on all the 𝜎′-sentences, and so every
𝜎′-sentence holds in the joint structure if and only if the (𝜎′)⋆-sentence holds – i.e., every sentence of
𝑋 holds. Consequently,𝔐⊔𝔑⋆ ⊨ℒ 𝜓 ↔ 𝜓⋆. So, we conclude that𝔐 ⊨ℒ 𝜓 if and only if𝔑⋆ ⊨ℒ 𝜓

⋆;
for, otherwise, if without loss of generality,𝔐 ⊭ℒ 𝜓 but𝔑⋆ ⊨ℒ 𝜓

⋆, then𝔐⊔𝔑⋆ ⊭ℒ 𝜓 ↔ 𝜓⋆ as ℒ is
Orthodox, which would contradict the previous sentence.
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Similarly, by the renaming property, we have𝔑⋆ ⊨ℒ 𝜓
⋆ if and only if𝔑 ⊨ℒ 𝜓. Hence,𝔐 ⊨ℒ 𝜓 if and

only if𝔑 ⊨ℒ 𝜓. Thus, 𝜎
′ is such a finite vocabulary satisfying the conditions of the lemma. �

We will now use Lemma 6.1.1 to show that if an Orthodox Logic is stronger than First-Order Logic,
and has both the Countable Compactness, and theℵ0-Downward-Löwenheim-Skolem-Tarski Prop-
erties, then we can find countably-infinite structures which agree on all the First-Order sentences, but
disagree on a given sentence that is not equivalent to any First-Order sentence.

Lemma 6.1.2. Let 𝜏 be a vocabulary, and let ℒ ≥ ℒ𝜔,𝜔 be an Orthodox Logic with both the ℵ0-
Downward-Löwenheim-Skolem-Tarski Property and the Countable Compactness Property. Then, let
𝜓 ∈ ℒ(𝜏)benot equivalent to anyfirst-order sentence. Then there exist elementarily equivalent countably-
infinite structures𝔐 and𝔑 (on the same domain) such that

𝔐 ⊨ℒ 𝜓 and 𝔑 ⊨ℒ ¬𝜓.

Proof: let 𝜏 be a vocabulary, and𝜓 ∈ ℒ(𝜏) be not equivalent to any first-order sentence. Then, choose
a finite vocabulary 𝜏0 ⊆ 𝜏 such that it satisfies Lemma 6.1.1 with our chosen 𝜓. Then, enumerate
ℒ𝜔,𝜔(𝜏0) as 𝜙1, 𝜙2, …. By induction, using Theorem 5.1.6, which says that if 𝜓 is not equivalent to
any first-order sentence, then neither 𝜓 ∧ 𝜙 nor 𝜓 ∧ ¬𝜙 is, for any first-order sentence 𝜙, because
ℒ is Orthodox, we conclude that there is an enumeration 𝜓1, 𝜓2, … of sentences such that each 𝜓𝑖 ∈
{𝜙𝑖, ¬𝜙𝑖}, and 𝜓 ∧ 𝜓1 ∧ ⋯ ∧ 𝜓𝑛 is not equivalent to a first-order sentence, for any 𝑛 ∈ ℕ. Similarly,
¬𝜓∧𝜓1∧⋯∧𝜓𝑛 is not equivalent to a first-order sentence either (we proved this fact in Theorem 5.1.7;
again, asℒ is Orthodox). And, so, by Theorem 5.1.5, which says that if a sentence if not equivalent to
a First-Order sentence it is satisfiable, both are satisfiable.

Define𝛹 ≔ {𝜓𝑛; 𝑛 ∈ ℤ
+}. Then, by 𝜔-Compactness (and based on the fact that ℒ is Orthodox, and

the properties of Orthodox conjunction), there exist 𝜏-structures𝔐 and𝔑, such that

𝔐 ⊨ℒ 𝛹 ∪ {𝜓},

and
𝔑 ⊨ℒ 𝛹 ∪ {¬𝜓},

(for each finite subset 𝑋 of 𝛹, there is a maximum 𝑘 ∈ 𝜔 such that 𝜓𝑘 ∈ 𝑋; then, any model of
𝜓 ∧ 𝜓1 ∧ ⋯ ∧ 𝜓𝑘 is a model of𝑋, by our notational definition of conjunction, of which there must be
at least one, as this conjunctive sentence is satisfiable; a similar argument holds for𝛹 ∪ {¬𝜓}) and by
theℵ0-Downward-Löwenheim-Skolem-Tarski Property, wemay assume that𝔐 and𝔑 are countably-
infinite structures.

But, we know that 𝔐 ↾ 𝜏0 ≡ 𝔑 ↾ 𝜏0, by construction, and, by Lemma 6.1.1, we must have that
𝔐 ↾ 𝜏0 ≇ 𝔑 ↾ 𝜏0. Also, by construction, we have that𝔐 ⊨ 𝜓 and𝔑 ⊨ ¬𝜓. Hence, byCorollary 5.2.2,
which says that for finite structures, isomorphism and elementary equivalence coincide, wemust have
that |𝔐| = |𝔑| = ℵ0. And, without loss of generality, we may assume that dom(𝔐) = dom(𝔑). �

Finally, we shall show that we can find structures, with the same properties as in Lemma 6.1.2, but
also have isomorphic 𝜏0-reducts, which we will conclude is a contradiction.

Lemma 6.1.3. Let 𝜏 be a vocabulary, and let ℒ ≥ ℒ𝜔,𝜔 be an Orthodox Logic with both the ℵ0-
Downward-Löwenheim-Skolem-Tarski Property and the Countable Compactness Property. Then, let
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𝜓 ∈ ℒ(𝜏) be not equivalent to any first-order sentence. If 𝜏0 ⊆ 𝜏 satisfies Lemma 6.1.1 (with 𝜓), then,
there exist elementarily equivalent isomorphic structures𝔐 ↾ 𝜏0 and𝔑 ↾ 𝜏0 with

𝔐 ↾ 𝜏0 ⊨ℒ 𝜓 and𝔑 ↾ 𝜏0 ⊨ℒ ¬𝜓.

Proof: first, choose a finite vocabulary 𝜏0 ⊆ 𝜏 such that it satisfies Lemma6.1.1, with our chosen𝜓, like
in Lemma 6.1.2. Then, choose, for each 𝑛 ∈ ℕ, new (2𝑛 + 1)-ary function symbols 𝑓𝑛 and 𝑔𝑛.

Set 𝜏′ ≔ 𝜏 ∪ 𝜏⋆ ∪ {𝑓𝑛; 𝑛 ∈ ℕ} ∪ {𝑔𝑛; 𝑛 ∈ ℕ}. Note that 𝜏′ is countable as it is a countable union of
countable sets.

Now, we set𝑋 to be the (countable) set of the followingℒ(𝜏′)-sentences:

• 𝜓 (which expresses the fact that the 𝜏-reduct is a model of 𝜓, because 𝜓 is aℒ(𝜏)-sentence);

• ¬𝜓⋆ (which expresses the fact that the 𝜏⋆-reduct is a model of ¬𝜓⋆); and

• for each ℒ𝜔,𝜔(𝜏0)-sentence 𝜙, the sentence 𝜙 ↔ 𝜙⋆ (which expresses the fact that the 𝜏0-reduct
and the 𝜏⋆0 -reduct are elementarily equivalent).

Note that every finite subset of𝑋 is satisfiable, becausewe have just seen, in Lemma 6.1.2 a very similar
situation: two elementarily equivalent models, one modelling 𝜓 and one modelling ¬𝜓, so taking𝔐
and𝔑 from that Lemma, we see that𝔐 ⊔ 𝔑⋆ models𝑋 (and we note that our resulting structure is
countably-infinite).

We shall now see that we can add sentences to 𝑋 that also enforce that the 𝜏0 and 𝜏
⋆
0 reducts are iso-

morphic.

Next, for each 𝑛 ∈ ℕ, select an enumeration of all the (logically distinct) ℒ𝜔,𝜔(𝜏0)-formulæ with at
most𝑛+1 free variables, ofwhich there are finitelymany13 (denoted 𝜅𝑛): 𝜂

𝑛
1 , 𝜂

𝑛
2 , … , 𝜂𝑛𝜅𝑛 . Then, consider

the following (countable) set 𝛤 ofℒ(𝜏′)-sentences:

• for each 𝑛 ∈ ℕ,

∀𝑥1 ⋯∀𝑥𝑛∀𝑦1 ⋯∀𝑦𝑛∀𝑥 (∃𝑦 (
𝜅𝑛
⋀
𝑖=0
(𝜂𝑛𝑖 (𝑥1, … , 𝑥𝑛, 𝑥) ↔ 𝜂𝑛𝑖

⋆(𝑦1, … , 𝑦𝑛, 𝑦)))

→
𝜅𝑛
⋀
𝑖=0
(𝜂𝑛𝑖 (𝑥1, … , 𝑥𝑛, 𝑥) ↔ 𝜂𝑛𝑖

⋆(𝑦1, … , 𝑦𝑛, 𝑓𝑛(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛, 𝑥)))) ,

which essentially says that if there is a 𝑦which satisfies the sameℒ𝜔,𝜔(𝜏0)-formulæ (with atmost
𝑛 + 1 free variables) as 𝑥 (except starred), when provided with other variables, then 𝑓𝑛 maps to
such a 𝑦, when it is given the same variables, and given 𝑥; and

• for each 𝑛 ∈ ℕ,

∀𝑥1 ⋯∀𝑥𝑛∀𝑦1 ⋯∀𝑦𝑛∀𝑥 (∃𝑦 (
𝜅𝑛
⋀
𝑖=0
(𝜂𝑛𝑖 (𝑥1, … , 𝑥𝑛, 𝑥) ↔ 𝜂𝑛𝑖

⋆(𝑦1, … , 𝑦𝑛, 𝑦)))

→
𝜅𝑛
⋀
𝑖=0
(𝜂𝑛𝑖 (𝑥1, … , 𝑥𝑛, 𝑔𝑛(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛, 𝑦)) ↔ 𝜂𝑛𝑖

⋆(𝑦1, … , 𝑦𝑛, 𝑦))) ,

which is obviously similar to the previous, except 𝑔𝑛 gives us such an 𝑥when provided with the
other variables and 𝑦.

13See, for example, PY4612 Advanced Logic.
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Then, we note that given a finite set of sentences from𝛤, we can expand an arbitrary (𝜏0∪𝜏
⋆
0 )-structure

into amodel of𝛤, because in satisfying the sentences in𝛤, all we care about is where 𝑓𝑛 and 𝑔𝑛map to,
whichdoes not interferewith any sentences not containing such function symbols (whichno sentence
of a (𝜏 ∪ 𝜏⋆)-structure can). Therefore, every finite subset of𝑋 ∪ 𝛤 (a countable set) is satisfiable. So,
by 𝜔-Compactness,𝑋 ∪ 𝛤 is satisfiable, and by the ℵ0-Downward-Löwenheim-Skolem-Tarski, there
is a countably-infinite model (see Lemma 6.1.2),𝔒 of𝑋 ∪ 𝛤.

If we let𝔐 ≔ 𝔒 ↾ 𝜏 and𝔑 ≔ (𝔒 ↾ 𝜏⋆)†, then dom(𝔒) = dom(𝔐) = dom(𝔑),𝔐 ⊨ℒ 𝜓,𝔑 ⊨ℒ ¬𝜓,
and𝔐 ↾ 𝜏0 ≡ 𝔑 ↾ 𝜏0, by our sentences in𝑋. And, furthermore, we shall show that𝔐 ↾ 𝜏0 ≅ 𝔑 ↾ 𝜏0,
using the sentences in 𝛤 by the back-and-forth method. Note, that both 𝔐 ↾ 𝜏0 and 𝔑 ↾ 𝜏0 are
countably-infinite as they share their domains with𝔒.

Enumerate, without repeats, dom(𝔒) as 𝑑1, 𝑑2, …. Then, because𝔐 ↾ 𝜏0 ≡ 𝔑 ↾ 𝜏0, it follows, from
our sentences in 𝛤, that we can construct the following sequence of facts about elementary equival-
ence:

𝔐 ↾ 𝜏0 ⊔ ⟨dom(𝔒); 𝑑1⟩ ≡ 𝔐 ↾ 𝜏0 ⊔ ⟨dom(𝔒); 𝑓0(𝑑1)⟩
𝔐 ↾ 𝜏0 ⊔ ⟨dom(𝔒); 𝑑1, 𝑔1(𝑑1, 𝑓0(𝑑1), 𝑑1)⟩ ≡ 𝔐 ↾ 𝜏0 ⊔ ⟨dom(𝔒); 𝑓0(𝑑1), 𝑑1⟩

𝔐 ↾ 𝜏0 ⊔ ⟨dom(𝔒); 𝑑1, 𝑔1(𝑑1, 𝑓0(𝑑1), 𝑑1), 𝑑2⟩ ≡ 𝔐 ↾ 𝜏0 ⊔ ⟨dom(𝔒); 𝑓0(𝑑1), 𝑑1, 𝑓1(𝑑1, 𝑓0(𝑑1), 𝑑2)⟩
⋮

that is, as we gradually add each element of the domain as a constant (to either of the structures), we
know how to choose an element of the other structure such that both elements of the domain satisfies
the same ℒ𝜔,𝜔(𝜏0)-sentences. Therefore, we can use this mapping to construct a sequence of partial
isomorphisms, which obviously have the back property and the forth property. So, by definition,
𝔐 ↾ 𝜏0 and 𝔑 ↾ 𝜏0 are partially isomorphic. Thus, by Theorem 5.2.5, which says that countably-
infinite partially isomorphic structures are isomorphic,𝔐 ↾ 𝜏0 is isomorphic to𝔑 ↾ 𝜏0. �

Finally, we can make clear the contradiction, and prove Lindström’s Theorem:

Theorem 6.1.4 (Lindström’s Theorem). Let ℒ ≤ ℒ𝜔,𝜔 be an Orthodox Logic with the Countable
Compactness andℵ0-Downward-Löwenheim-Skolem-Tarski Properties, thenℒ is equivalent toℒ𝜔,𝜔.

Proof: suppose otherwise, then there is some vocabulary 𝜏 such that there is aℒ(𝜏)-sentence𝜓, which
is not equivalent to any first-order sentence. But then, by Lemma 6.1.3, we can find two countably-
infinite, isomorphic structures 𝔐 and 𝔑 such that 𝔐 ⊨ℒ 𝜓 and 𝔑 ⊨ℒ ¬𝜓, which are both 𝜏0-
structures, where 𝜏0 is a finite subset of 𝜏, and, by Lemma 6.1.1, is such that if𝔐 ≡ 𝔑, then𝔐 ⊨ℒ 𝜓
if and only if 𝔑 ⊨ℒ 𝜓. This is a contradiction, as we know that (due to the notational definition of
negation for Orthodox Logics) that𝔑 ⊭ℒ 𝜓, but𝔐 ⊨ℒ 𝜓, by construction. Hence, there cannot be
such a sentence.

So, any suchOrthodoxLogic, which is stronger than First-Order Logic,must either violateCountable
Compactness, or theℵ0-Downward-Löwenheim-Skolem-Tarski theorem. �

As we can see, then, Lindström’s Theorem nicely characterises First-Order Logic in relation to all
other Orthodox Logics (which are usually the main target of Abstract Model Theory).
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6.2 Lindström Theorems and Abstract Model Theory
This concludes our introduction to AbstractModel Theory; but, in the spirit of classifying and char-
acterising Logics (the goals of Abstract Model Theory), there are a host of other theorems that neatly
characterise Logics. They are named, after Lindström’s Theorem, “LindströmTheorems”. There are
other LindströmTheorems for First-Order Logic, which can also be seen in [Flu16, p. 82], character-
ising First-Order Logic with properties that have not been seen in this project.

Moving away from First-Order Logic, there are two other interesting classes of Logic that I suggest
an interested reader look into: Modal and Intuitionistic Logics. For an introduction to Modal Logic
(which I recommend an interested reader to look at first), I recommend the book [BRV01]. Then,
for an introduction to Intuitionistic Logic (including an introduction to Heyting Algebras, which
are used to define Intuitionistic Logic, and are a generalisation of BooleanAlgebras), the lecture notes
[BJ05] are nice. Then, if an interested reader wants to look at the Lindström Theorems for these
Logics, a proof and statement of the Modal Lindström Theorem can be found in [Ben07]; and a
proof and statement of the Intuitionistic Lindström Theorem can be found in [OBZ21].

Had there been more space in this project, I would have liked to provide an introduction to Modal
and Intuitionistic Logics, and provided the aforementioned Lindström Theorems for the particular
varieties described by the Lindström Theorems. Moreover, I wished that I could have included the
deep relationship between Logics and games: we can express “truth in a structure”, “satisfiability”,
and “Logical equivalence of structures” with deeply connected games; that is, we can play a games on
structures to check if, for example in the first case, whether a given sentence holds in the structure.
And, in doing so, we can characterise a Logic by its “truth games”. Unfortunately, providing an intro-
duction to games took us too far off of the main path, and seemed to confuse the main message, and
so had to be cut. I strongly recommend that an interested reader explore this relationship, for example
in a text like [Vää11].

Finally, for more pure Abstract Model Theory, then there is [BF13], which is a very big book, all
about Abstract Model Theory. It is from this book that I have modelled our proof of Lindström’s
Theorem on, as well as our versions of Compactness, Löwenheim-Skolem-Tarski, Logic, and Ortho-
dox Logic. Having read this project, an interested reader should be able to pick up and read this book.
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