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1 Introduction
Naive Set Theory is a theory of sets using at least the Axiom of Extensionality:
VxVy[x=y<—>Vz(z€x<—>z€y)],

and the Axiom Schema of Naive Comprehension, where ¢(x) is a formula with all free variables
among x:

yVx [x €y < ¢(x)] .
The former axiom asserts the main feature of sets: they are equal if and only if they have the same
elements. Le., sets are defined totally by their elements. The latter axiom schema asserts that for any

formula with at most x free, there is a set corresponding to such a formula, in the sense that the set
contains only and all those objects satistying the formula.

The interest in Naive Set Theory stems from the view that, as Weber [Web12, p. 288] puts it, “the
naive view of sets is as predicates in extension” (diacritics my own). However, classically, such a view
is impossible. The typical example is the Russell Class — first presented in a letter to Frege, by Russell,
demonstrating the issue with his Basic Law V, which is roughly equivalent to our modern Axiom
Schema of Naive Comprehension. The Russell Class is defined as

R:={x; x ¢ x},

where this notation says that R is the unique set satisfying the Axiom Schema of Comprehension
where ¢(x) = x ¢ x. However, if such a class were to exist, then Naive Set Theory, formulated
classically, would be trivial, as the Russell Class can be used to create, classically, a contradiction: we
see R € R implies R ¢ R; and, we see R ¢ R implies R € R. Both follow from the fact that R contains
only and all those sets that do not contain themselves. From this, we can deduce that R € R if and
onlyif R ¢ R, and, due to the Law of Excluded Middle, we must have a contradiction.

So, supporters of Naive Set Theory have been forced out of using classical logic. Perhaps the most naive
approach is of those who wish to simply accept that sets like the Russell Class exist, and, moreover,
are contradictory. That is the tradition of using paraconsistent logics (i.e., a logic that has non-trivial
models with true contradictions — i.e., denies the explosion or ex falso guodlibet) to formulate Naive
Set Theory. Notably, such philosophers include, Brady [Bra89], Priest [Pri06, Chapter 18], Restall
[Res92], and Weber [Web10].

In this essay, I begin, in section 2, by saying that I believe, in addition to the Axiom of Extensionality,
and the Axiom Schema of Naive Comprehension, that models of Naive Set Theory should also satisfy
aprinciple thatI call the “Principle of Definability”, which says that for each set there is a formula with
at most x free such that the elements of the set are all and only those objects satistying the formula. I

call this “Candid Set Theory”.

From there on, I outline why second-order logic may be the best place to turn to construct such mod-
els. And, starting from section 3, I outline a basic second-order paraconsistent logic, which we modify
from there on to produce a (hopefully) more suitable logic for the task. Notably, I will not attempt
to construct a model of Naive Set Theory in this logic, let alone Candid Set Theory. As we shall see,
in section 4 and section 5, there are problems with second-order paraconsistent logics that first need
to be settled before they can be used for such a task.

In section 4, I show that it is unfeasible to quantify over all possible paraconsistent predicates, and
instead suggest that we quantify over only classical predicates and the predicates in the language.



Finally, in section 5, I explore an alternative method of validating the Axiom Schema of Naive Com-
prehension, given we can no longer quantify over all formula of the logic, due to our results in sec-
tion 4, as is often possible with second-order logics. This gives a more classical flavour to Naive Set
Theory, which may be regarded as a disadvantage to some. This also raises questions about our se-
mantics, which I use to justify a final version of our basic logic for (hopefully) future use in the field
of Candid Set Theory formulated using second-order paraconsistent logics.

1.1 Notation

Throughout, I shall use the A for conjunction, Vv for disjunction, = for negation, V for universal quan-
tification, and 3 for existential quantification. First-Order variables will be written as lowercase latin
letters, usually from the end of the alphabet: x, y, 2, €., and second-order variable will be written as
uppercase latin letters, again, usually from the end of the alphabet: X, Y, Z, &. Often, the arity of
the predicate is written as a super script: for example X L X3, 710, 69c. 1 will write #(x) to mean that
the free first-order (and free second-order) variables are at most the first-order variable x, and, simil-
arly, I will write ¢(X) to mean that the free second-order (and free first-order) variable are at most the
second-order variable X.

2 Candid Set Theory

2.1 What?

Inow argue for whatI call “Candid Set Theory”1 . This extends Naive Set Theory with a new principle,
which I shall call the “Principle of Definability”:

Given a set S, there is a_formula ¢(x), of the underlying logic, where at most x is free, such
that for any object y of the domain, y € & if and only if ¢(y) holds.

Unless we are able to quantify over formula (or at least those formul® with at most x free) in our
logic, there is no way to add this as an axiom to Naive Set Theory. I am not aware of any such sys-
tems. This seems like a property of models. In essence, the Principle of Definability says, to use typical
model-theoretic terminology, every set is pointwise-definable in the model. Candid Set Theory, then,
is a restriction on the models of Naive Set Theory to only those models in which every set is pointwise-

definable. Such models of ZF have been considered by Hamkins, Linetsky, and Reitz [HLR 13]. Not-
ably, they are necessarily countable models.

2.2 Why?

Why, then, do I think we ought to restrict our attention to such models, by adding the Principle of
Definability to Naive Set Theory? I will present three arguments; all rely on the fact the reader is
already sensitive to the Naive View. The first shall be directed to those who believe logic is a model of
language — i.e., logical anti-realists. The second shall be directed to those who believe logic is a model
of “consequence in nature” - i.e., logical realists. The third shall be more general.

The first argument, then, directed toward logical anti-realists who already accept Naive Set Theory,
is: it would seem bizarre if in our models of set theory, we had undefinable sets: for there would be
no way to make inferences about the properties of an individual such set — only them all as a whole,
through quantification. But this universe of sets is supposed to arise from logic as a model of language

'Naive Set Theory ain’t naive ‘nuff.
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— and the naive view of these sets is that they are, again, to quote Weber, “predicates in extension”. So,
there would be sets in our models, which are supposedly “predicates in extension” but there would
be no such predicate defining them. This seems ontologically unnecessary, and very bizarre. But, of
course, this is not a water-tight argument and so I'm sure there are those who'd disagree.

The second argument is: if logic is a model of real, actual consequence in the world, then such a logic
would not be able to make inferences about the individual sets, for there would be no way to pick out
the individual (in fact, this view — the one of the second argument — seems to be making the claim that
any model of the universe should be pointwise-definable, which is of course a very strong statement),
and derive its properties. If the logic were able to do such a thing, then it must be able to pick out
each set, using logical formula, which would make the set definable. This seems strange: for there
are uncountably many real numbers, and I am claiming there are only countably many. We return to
this reasoning shortly: I shall address the objection that Candid Set Theory restricts our attention to
countable models.

Moreover, another objection to this second argument is that we only have epistemic access to a portion
of true logical consequence: we cannot see the whole thing, and cannot appreciate the full power of
logical consequence. Thus, those sets that were not pointwise-definable, may only be not pointwise-
definable in virtue of the fact that we cannot reason about them, due to our limited epistemic access,
but that the true logical consequence2 of nature can, in fact, reason about such sets, and provide them
with names.

The third is: surely “being a member of the set &” is a predicate, and so this is the defining predicate
of the set. However, notably, in writing this argument, I am giving & a name, which is assuming it is
pointwise-definable. And so, taking what I've said at face-value can be seen to be question-begging.
On the other hand, it seems like there is a naive simplicity to this view, which is very appealing, at least
to me: for every set, there is a predicate, which is “being a member of that set” — but, perhaps, this is
assuming a name for the set, even in this case, in which case I am question-begging. I do not believe so,
for I think such a predicate is mind and language independent (I am a logical realist), and so there is a
real property (and hence predicate) of being a member of an arbitrary set, without requiring a name
for the set. This is the most appealing, to myself, of the arguments I have given, but certainly may not
convince anyone else!

Again, the objection that we only have access to a fragment of true logical consequence stands against
this argument.

Another objection one might have to the view that Candid Set Theory should replace Naive Set The-
ory is that I am essentially saying we want to restrict our attention to countable models of Naive Set
Theory — just as in the case with [HLR13]’. However, Read in conversation with Weber [Web12,
p- 288] believes this is a good thing, as being uncountable is a limitative result. I however, would say
the discussions about cardinality are not helpful: these are results about cardinality in a classical meta-
theory. I believe that we want to use Candid Set Theory as our meta-theory, and re-formulate Candid
Set Theory inside itself. Priest [Pri06, p. 259] agrees with this sentiment: “in the model theory of
paraconsistent logic, we must therefore use paraconsistent set theory” — only I take the true “paracon-
sistent set theory” to be Candid Set Theory; and, as we shall see shortly, I propose model-theoretic
semantics for our logic of choice.

In this case, we should only be worried about cardinality from the perspective of the logic itself —

20r, indeed, logical consequences...
>There are countably many formule, so for there to exist a formula defining each set, there must be countably many
sets.
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and we know from our experience of Skolem’s paradox, which says there are countable models of set
theory, and in those models, there are still “uncountable” sets — in the sense that there is no injection
from such a setinto the natural numbers znszde the model. So, if such a countable model of ZF were our
meta-theory, it does not seem to matter what a more general classical meta-theory would have to say
about cardinality — only the “true meta-theory”, which I would take to be Candid Set Theory.

I think, then, the charge against Candid Set Theory that it only admits countable models is question
begging: for someone would only accept this charge if they already accept a meta-theory different
from Candid Set Theory. Of course, this response does not provide evidence for Candid Set Theory,
it merely responds to the objection that the models are countable.

Even if one is not receptive to my arguments for restricting our attention totally to Candid Set Theory,
Candid Set Theory canstill be of interest to Naive Set Theorists. This is in the same way that Hamkins,
Linetsky, and Reitz were interested in looking at pointwise-definable models of ZF. We are interested
in models where we can “talk” about everything that exists individually. Certainly, though, this does
not provide philosophical justification for Candid Set Theory, but motivates it from a position of
interest.

2.3 How?

How, if one is interested in the project of Candid Set Theory, should one go about it? Itis not obvious
that the Principle of Definability holds in the models of Naive Set Theory already considered. E.g., the
non-trivial models of Naive Set Theory in the relevant logics DKQ and TKQ, constructed by Brady
in [Bra06, p. 242]. And, if it’s anything like the issues with ZF discussed in [HLR 13], then significant
study is required of the current models of Naive Set Theory, to check if the Principle of Definability
holds.

So, I suggest in order to make it more likely that the Principle of Definability holds, we should take
alook at second-order logic. Just as classical second-order logic dramatically ramps up the expressive
power of classical first-order logic, the hope is that second-order paraconsistent logic will do the same
for us. The hope, then, is that our models of Naive Set Theory, will turn out to be the models of
Candid Set Theory also. However, I do not have time to examine if we do get these results. That
is something for future research. For now, this is a motivation for looking at Naive Set Theory in a
second-order paraconsistent context.

So, let us proceed, and see a basic paraconsistent logic, which we shall slowly make changes to.

3 A Basic Logic

I will now introduce a basic logic that we shall modify from here on. This is a logic which extends
the quantified version of the Logic of Paradox (LP), which was first explored by Priest in [Pri79]. The
semantics for this logic are based on those given by Priest in [Pri06, p. 85]. It would be ideal to be
able to use LP as our logic of choice, extending it into the Second-Order, but, it has been shown by
Forster [BES13] (the paper also includes a strengthening of this result by Seligman, and some further
thoughts from Beall) that LP cannot have any real conditional: if — is a conditional operator, and
A — B, A = B, then, in fact, 4 — B = B. Which, of course, makes any conditional of LP useless for
axiomatising, in any serious way, Naive Set Theory. Hence, we proceed by adding our own conditional
to LP.
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3.1 First-Order Semantics

Our first parse of our logic will be the first-order fragment. Here, we are simply extending quanti-
fied LP (which is written as LPQ for short) with a suitable conditional. To do this, we use modal-
semantics. The resulting logic will be called LPQ=> as we add the conditional ‘=’ to LPQ.

First, we'll define our well-formed formule. Given a vocabulary® 7, we define the set of LPQ=>-
formula given 7, denoted LPQ=>(7). We do not allow 0-ary functions or relations.

The terms of LPQ=(7) are the smallest set satisfying:
e first-order variables: x, y, 2, €. are terms of LPQ=(7);
* if ¢ is a constant symbol in 7, then ¢ is a term of LPQ=(7); and

* if f is an z-ary function symbol in 7, and £, ..., #, are terms of LPQ=(7), then f (7, ..., ,) isa
term of LPQ= (7).

The atomic formule of LPQ=(7) are the smallest set satisfying:

* if R is an z-ary relation symbol in 7, and ¢, ..., £, are terms of LPQ=(7), then R¢, - ¢, is an
atomic formula of LPQ=(7).

Then, LPQ=(7) is the smallest set satisfying:
* the atomic formule of LPQ=(7) are all in LPQ=(7); and
* if ¢,y € LPQ=(7) and x is a variable, then (¢ A ¥), 74, (¢ = ), and V¢ are in LPQ=(7).

As usual, we omit brackets (or, use square brackets) when the resulting meaning is still clear. We treat
¢ V ¥ as an abbreviation for =(=¢ A =), and x¢ as an abbreviation for =Vx—¢. We say a variable is
bound if it satisfies the standard conditions, and free otherwise; we call a formula with no free variable
a sentence.

Given a vocabulary 7, we define a 7-structure of LPQ= as a (I#/, D, R, I, @) quintuple, consisting
of I a set of worlds (which are arbitrary objects), D a non-empty set of objects, which shall act as
our domain, R a binary relation on /77, I an interpretation function that takes a world and an atomic
sentence from LPQ=(z")> and maps to to a non-empty subset of {0, 1} — as well as interpreting,
world independently, functions and constants, and a distinguished element of @ € 17, which acts as
the “actual world”. The entire domain D is available at every world.

Our interpretation function /, then has two main roles: to correctly pick out the correct element of
the domain given a term, and to evaluate atomic sentences at any given world. The latter role depends
on the former. The former requires we give an interpretation to the constants and functions in our
vocabulary. So, if ¢ € 7 is a constant, we require that /(c) is defined, and maps to some element of
D. Also, if f € 7 is an n-ary function, we require that /(f) is defined, and maps to some some 7-
ary function on D. Then, given a term ¢ of LPQ=>(7), / can inductively return the corresponding
element of D. Note: all of this is world-independent.

In addition to supplying this information for terms and constants, we must then define, world-relatively,
the extension and anti-extension of each predicate P € 7. Le., I(w,P) = [,(P) = (P",P"), where
PTuP” = D" (where nis the arity of P), and P* denotes the set of #-tuples in D of which P holds, and

4A set containing our function, relation, and constant symbols.
>This represents the language when we add a name for each element of the domain to 7 — we will write d € D for the
name of the object 4.



P~ denotes the set of n-tuples in D of which P is false. P is classical, then if and only if 7" n P~ = @.
P* is the extension of P, and P~ is the anti-extension of P.

Then, given an atomic sentence P"7; - £, of LPQ=(z"), where P” is an n-ary predicate and #,, -, £,

are terms of LPQ= (7)), we can define / (w Pt~ t,) = L,(P"t; t,) in the following way: we write
(P*,P7) =1I,(P");andsayl € I (P"t, - t,)ifand onlyif (I(#,),,1(z,)) € P*;and0 € [ (P"# - 2,)
if and only if (/(#), -, 1(¢z,)) € P~. Thislets / fulfil its latter role.

We require R have the following three restrictions: first, for all w € W, @Rw. Second, a “semi-
irreflexivity” condition: wRw for w € W implies that w = @. Third, for all w, w' e W, we require
that for any atomic sentence ¢ of LPQ=(z") that wRw' implies that I (¢) < I, (¢)

Given a 7-structure, we define a valuation function », which takes a world and a sentence, and maps
it to a non-empty subset of {0, 1}. We often write 7, (¢) instead of »(w, ¢).

We can define » recursively as follows for Wt = (W, D, R, I, @):
* if ¢ is atomic, then for all w € W, v, (¢) = L,(¢);

w

cifp = (Y Ay), thenforallw € W, 1 € v,(¢) ifand onlyif 1 € »,(¥) and 1 € »,(y); and
0 € v,(¢) ifand only if 0 € v, (¢) or 0 € 2, (y);

* if ¢ = 7y, thenforallw € W, 1 € v,(¢) if and only if 0 € »,(¥); and 0 € v, (¢) if and only if
1ey,(¥);

e if ¢ = Vay(x), thenforallw € W, 1 € v,(¢) if and onlyif foralld € D, 1 € v,(y(d)); and
0 € v, (¢) if and only if for some d € D, 0 € v, (¥(d)); and

« ifg = (y = y),thenforallw € W, 1 € »,(¢) if and only if for all w" € I such that wRw',
1 € 5, (v) implies that 1 € »,,(y); and 0 € »,(¢) if and only if for all w € 17 such that wRw',
1 € v, () implies that 0 € v, (y).

We shall now define logical consequence for LPQ=. Given I a set of sentences of LPQ=>(7), and a
sentence ¢ € LPQ= (), we write I & ¢ if and only if for every z-structure (I, D, R, I, @) where for
the corresponding valuation function, », 1 € v, (y) for each y € I', we also have that 1 € »,(g).

In addition to =, we can define a conditional —, which contraposes, as (¢ — ) = (¢ = ¥) A
(m¥ = —¢). In practice, — will be our conditional of choice, but, if for some reason it turns out
troublesome, we can always switch to = and give up contraposition — the reader can provide a simple
counter-model. The semantics for this conditional are worked out in full here for an easier time writ-

ing (and reading) proofs:

* 1€y,(p — v)ifandonlyifforallw’ € W such thatwRw', 1 € v,,(¢) implies that 1 € v, (¥);
and 0 € v, (¢) implies that 0 € v, (4).

* 0 € 5,(¢ — ¥) if and only if either for all w' € W such that wRw', 1 € »,,(¢) implies that
0 € v, (¢); or for allw” € W such that wRw", 0 € v, () implies that 1 € v, (¢).

We define the bi-conditionals: (¢ <> ¢) = ((¢ = V) A (¥ = @), (d = ¥)=(d=¥)A (v =
$)).

3.2 Second-Order Semantics

We extend LPQ=, adding semantics for second-order quantification, calling the resulting logic LPQ2=>,
and writing LPQ*=(7) for the set of LPQ*=-formulz.
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The atomic formulz of LPQ*= () are the smallest set satisfying:
* the atomic formule of LPQ=(7); and

* if X" is an n-ary second-order variable, and #, ..., z, are LPQ=(7)-terms, then X"#, - ¢, is an
atomic formula of LPQ*= (7).

So LPQ*=(7) is the smallest set satisfying:
* the atomic formulz of LPQ*= () are all in LPQ*=(z); and

s ifg, ¥ € LPQ2 = (7), x is a first-order variable, and X is a second-order variable, then (¢ A ¥),
=g, (¢ = ¥), Vxp, and VX ¢ are in LPQ*= (7).

Then, 3X¢ := "VX=¢. And, we define the concept of being bound for second-order variables ana-
logously to first-order variable; and a second-order variable that is not bound is free. A sentence of
LPQ*=(7) is any ¢ € LPQ*= (r) with no free variables (whether they be first or second-order).

Given a vocabulary 7, we define a 7-structure of LPQ2 = as (W,D,R,1,@), just as in LPQ=. We
impose the same conditions on W, D, R, I, @, and logical consequence, but relativised to LPQ2 =.In
addition, however, 7 is defined to take an atomic sentence from LPQ2 =>(7D P ), where 7P is defined
to extend 7° with a name for each possible z-place predicate® defined on D. Moreover, if Q is a pre-
dicate in 727, but not in 7, then we require that for all w, w e W, 1,(Q) = 1,(Q) - and, we require
that for each possible 7-place paraconsistent (including consistent) predicate Q"7 there is a name K”

for a predicate in LPQ*=(z"") such that I(K") = Q.
v is as for LPQ=>, but with a new clause for the second-order quantifier case:

* 1 € »,(VX"¢(X")) if and only if every n-place predicate Q" of LPQ*=(z"") is such that
1 €,(4(Q")).

* 0 € »,(VX"$(X")) if and only if some z-place predicate Q" of LPQ*=(z”) is such that
0 €%,((Q")-

That is, we can quantify over all possible extension anti-extension pairs, so long as every z-tuple for 7
the arity of the predicate, appears in at least the extension or the anti-extension. We see, in section 4,
that this is problematic, and restrict ourselves to quantifying over fewer predicates — defining a new
logic, which will have the same properties discussed in the next subsection as LPQ*=.

3.3 Some Properties of LPQ°=

Here, we see some properties of LPQ*= (7). The firstisa general property that gives good pragmatic
reason to work with the logic. Roughly, the truth values always filter forward into any world accessible
from any given world.

The second results are about contraction. We will show that the conditionals = and — of LPQ*=
are (7 + 1)/n contraction free. This is not enough to guarantee that the logic is able to support Naive
Set Theory however. Restall [Res93] has conjectured that a logic is able to support Naive Set Theory
if and only if it is robustly contraction free. We say that a logic is robustly contraction free if and
only if there is no operator > such that 4 — B = 4 > B, A,4 > B = B,and 4 > (4 > B) F
A > B, for our conditional of choice —. And Restall proves, in the same paper, that if a logic is
not robustly contraction free, it cannot support Naive Set Theory (without the model of Naive Set

In the paraconsistent sense: a pair with an extension and anti-extension, covering all of D".
7 . . . . .
Le., extension, anti-extension pair covering D”.
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Theory being trivial). We will not be able to prove that result here, however, but we are able to show
that the conditionals are (% + 1)/7z contraction free.

3.3.1 Truth/Falsity of Sentences Filters Forward

Let us write y* to denote the application of the function - : {0,1} — {0, 1} which is defined to be
the only non-identity permutation of {0, 1} (i.., classical negation).

Theorem 3.3.1. Let M := (W, D, R, I, @) be a t-structure, ¢ € LPQ*= (") a sentence, and v the
valuation function corvesponding to . Then, for anyw € W, x € {0, 1}, and w € W such that wRw',
x € v,(@) implies that x € v, ().

Proof: we shall proceed by induction on the complexity of ¢. Our basis case, when ¢ is atomic, holds
by definition. We have different cases to consider for our induction step:

Negation If¢ = =y, thenx € v, (¢) implies that x™ € v, (¢), and, so, by our induction hypothesis,
x" € v, (¢) for all ' such that wRw', and so, x € ,,(¢).

Conjunction If¢ = (¢ A y), then1 € y,(¢) implies that 1 € »,(¥) and 1 € »,(y), and, so, by
our induction hypothesis, 1 € 5, (¥) and 1 € »,,(y), for all w' such that wRw', and, so, 1 € ,,(g).
Alternatively, if 0 € ,(4), then, 0 € »,(¥) or 0 € v,(y), and, so, by our induction hypothesis,
0 € %, (¥) forall ' such that wRw' or 0 € ,,(y) for all ' such that wRw'; and, so, 0 € v,,(¢) for all
w' such that wRw'.

Implication If¢ = (¥ = y), then1 € 5, ($) implies that for all w' such that wRw', 1 € v, (y)
if 1 € v, (y), and, so, by the fact that R is transitive, for all w" such that w' Rw”, wRw", a fortiori
1 € 5,(y)if1 € v, (¢¥);and, so 1 € 5, (4). Alternatively, if 0 € ,(4), then for all w’ such that
wRw',0 € v, (y) if 1 € v, (¢). So, if w” is such that w' Rw", wRw" as R is transitive, and 0 € v, (y) if
1 €, (¢). Thus, 0 € v, (¢).

First-Order Universal Quantification If ¢ = Vxy(x), then 1 € »,(¢) implies that forall d € D,
1 € ,(¥(d)), and, so, by our induction hypothesis, 1 € ,, (¥ (d)) for all " such that wRw', and so
1 € v,,(¢). Alternatively, if 0 € ,(¢), then for some d € D, 0 € ,(¥(d)), and, so, by our induction
hypothesis, 0 € »,, (¥(d)) for all ' such that wRw'; and, so0 0 € v, ().

Second-Order Universal Quantification If ¢ = VX"y(X"), then 1 € v, (¢) implies that for any
Pwith,(P) = (P*,P")and P*UP™ = D", wemusthave that 1 € »,(¥/(P)), and so, by our induction
hypothesis, 1 € v, (y(P)) forany w’ € W with wRw'; and so 1 € v,,(#). Alternatively, if 0 € »,(¢),
then for some P with ,(P) = (P*,P”) and P* U P~ = D", we must have that 0 € v, (¥(P)), and so,
by our induction hypothesis, 0 € »,, (¢(P)) forany w' € W with wRw'; and s0, 0 € v,,($). [ |

We can use this to show that for any sentence ¢ € LPQ*=(7), forall w € W, v,(¢) # @, and
v,(#) < {0, 1}, both of which we require as this is a solely paraconsistent (opposed to paracomplete)
logic. In particular, the only case we need to verify is the conditional, and all of the other cases follow
(by case, I mean if we were to induct on the complexity of ¢) by the fact they hold for LPQ), and it is
obvious for the second-order quantification case. To see it holds for conditionals, note, obviously, if
¢ = (¢ = y),thenforallw € W, ,(¢) < {0, 1}, by definition. Then, to see ,(¢) # @, assume
thatitis: s0 0 ¢ »,(¢) and 1 € »,(¢). Then by our above conditions, there are w', w" € W such
that wRw' and wRw" with 1 € v, (y) and 1 ¢ ,(y), and so, 1 & »,(y) for otherwise 1 € »,,(y)

by Theorem 3.3.1. But, »” is such that 1 € v,,(¢) and 0 ¢ %,.(y), and so0, 0 & ,(y), by the same
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reasoning as before. But, then, this violates our induction hypothesis that @ # »,(y) < {0, 1}. Hence,
either 0 € v, (¢) or 1 € »,(¢#).

As we have just seen, this (Theorem 3.3.1) is a nice result, and makes proofs easy to work with in this
logic. And gives us some leeway to philosophically justify the conditional semantics: we examine ways
the model could “go wrong” (in terms of ways it could be more consistent), and see if the conditional
would still hold in these situations.

3.3.2 Conditionals are (z + 1)/7n Contraction Free

We shall now define what it means for an operator to be (7 + 1)/7 contraction free. But, first we need
to define some sentences. We can inductively define ¢, for an operator > as follows: ¢; = 4, and

bre1 = (4) > 8,).

We say an operator > is (7 + 1)/n contraction free if for all positive integral 7, ¢, # ¢,. Restall
[Res94, Chapter 13] showed if we have an operator > which is not (7 + 1)/ contraction free, satisfies
modus ponens, and is derivable from a conditional of choice, then the logic is not robustly contraction
free. These results that the conditionals of LPQ*=> are (% + 1)/x contraction free shows the issue (if
there at all) does not lie with the conditionals themselves. This provides some® assurance LPQ*= is
itself (7 + 1)/n contraction free.

We will now define our counter-models, and then we shall show that these are indeed counter-models,
for each positive integral zto ¢, = ¢,”. M, isa {4}, ..., 4,, c}-structure, where each 4, is a 1-place
predicate and ¢ a name. We will abuse notation here, and write 4; as shorthand for 4,c. I, :=
(W,D,R, I, @), where we define each element as follows.

W = {w,w,,..,w,}. D = {d}, and the name ¢ of our vocabulary refers to d. @ = w;. R is
defined in such a way that given distinct v, w € W, vRw if and only if for each 4;, v,(4,) < v,(4;).
Moreover, @R@, and wRw for w € W implies that @R@. Clearly, then, R is transitive, and satisfies
our feeding-forward of atomic formule — as our only atomic formula are 4;s. Finally, 7, (4,) = {0, 1}
(and 1, (4 j) = {0} otherwise) if and only if when we write 7 — 1 in binary, with the least-significant

bit on the left, and ensuring that there are 7 digits9 — adding extra Os if required, the jth digit (from
the left, and counting from 1) isa 1.

Theorem 3.3.2. LPQ*=s is such that for any positive integral n, ¢, # &

Proof: we proceed by induction on 7. Our basis case is when z = 1. A counter-model is 9t,.
Our induction hypothesis is that for all # < £, then I, is such that

* the world w € W where v,(4,) = {0,1},andfor1 < 7 < n + 1,9,(4,) = {0} is such that
Vw(¢;7—1) = {0}5

¢ V@(¢:) = {0}:

* Levg(fu)

We will now verify that i, satisfies these three items. For the first, ¢,”;, when z = 1is ¢, = 4,, so
we require that in the world where only 4, is satistied, 4, is not. Well, this holds by definition (and
such a world clearly exists). For the second item, ¢, is 4; — A,, we can see this is easily not satisfied

8Although, admittedly, not much.
le.,ifn = 3,and 7 = 4, then 7 — 1 is written as 110.
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in virtue of the world discussed previously: where only 4, is satisfied but 4, is not. Finally, for the
third item, ¢,/ is 4, — (4, — 4,). As0 € v, (4, — A,) Nnv,(4,), we know that in every world
the “contraposing” clause of our conditional is satisfied: forallw € 77,0 € v,(4; — A,) implies that
0 € v,(4,). So, we just need to show that forallw € W, 1 € v,(4;) implies that 1 € v, (4; — 4,).
This follows if 1 € »,(A4; — A4,) is true for our world w in our proof of the first item. This is
certainly true, because the only world that is accessible from w is the trivial world. Hence, item three
is proved.

Induction step: » = £ + 1. First, note that by our induction hypothesis, there is a world w in M,
such thatv,(4,) = {0,1} andfor 1 <7 <k + 1,,(4;) = {0},and v, (¢,”,) = {0}.

Then, it is obvious that the world &' in MM, , such that »,(4,) = {0,1} = »,(4,,,) and for 1 <
i < k+1,v,(4;) = {0} is such that 5, (#,”;) = {0}. Because w', and the worlds accessible from
w' are identical to w and those accessible from w; i.e., same number, relations, truth values; except
with respect to 4,,,, which does not even exist in w and the worlds accessible from w, and 4, is a
glutin w’ and the worlds accessible from w', and clearly 4, ,, being glutty has nothing to do with the
conditional facts about 4; and 4, — so we see that w and w" are “isomorphic” with respect to 4; and
A,, and consequently the conditional facts about 4, and 4,.

But, then, the world w” in 9, ,, such that v, (4;) = {0,1} and for 1 < 7 < k + 2, 9,.(4;) = {0} is
such that v, (#,”) = {0} because w"Rw" and 1 € v,,(4;), but 1 ¢ v,,(#,”,) = {0}. This satisfies the
first item of our induction.

The second item, then follows because @ of M, is such that @Rw",and 1 € v(A4;), but 1 ¢
Vw”(¢/e_))'

Finally, note that 1 €

A,) implies that 1 € »_(4,..) vacuously, and 0 € »_(¢,.,) implies that
@\11 P o (Prit Y o (Prat p

0 € 7,(A4;) because 0 € »,(4;) by construction. Moreover, as 0 € »,(¢,;;) and 0 € »,(4;), for
all worlds w of M,,,,, 0 € v,(¢4,;,) and 0 € v, (4,); so, clearly, for all w such that wR@, 0 € v,(4,)

implies that 0 € »,(4,;,). Then the result follows if for all worlds w of M, ,,, 1 € v,(4;) implies
1€v,(4.,)

Note this follows if 1 € ,,(#,,,), as this is the “first” world where 4, is true. This is the case. For,
in every world w accessible from w” , we must have that v,(4;) = {0, 1}, and so in order to show that
a sentence of the form ¢, for some # holds at each w, we just need to show that ¢,”, holds at every
world accessible from w.

We can define a concept called “layer”. We say the 7th layer of worlds accessible from w” is defined
inductively as follows: the Oth layer contains only w"' Then, the (z + 1)th layer is a subset of the
worlds of M, , such that each w in the (7 + 1)th layer is such that w" Rw, and, the (7 + 1)th layer
contains all and only those worlds w which are such that there is a world v in the nth layer with vRw
and there does not exist any world # such that ¥R« and #Rw - i.e., there is no world between the
two.

By our earlier observation, every world in one of these layers has a glut at 4.

We can see there are &+ 2 laye:rs11 and the (k£ + 1)th layer contains only the fully trivial world. Then, in
the (k£ + 1)th layer, every world w is such that 1 € v, (4,) n,(4,) asitis fully trivial (or we can note
that the conditional is trivially satisfied by the lack of a world accessible from w). So, every world w in

104" is not accessible from ", hence we 0-index it.

The /7th layer is such that the number of gluts, apart from A;, in each of the worlds it contains is equal to 7 — each layer
can be characterised totally by this property: it contains only and all those worlds with 4, glutty and 7 other 4s glutty.
There are k£ + 1 other Ajs, s0 k + 2 layers.



the kth layer is such that 1 € v, (¢;”) as well as 1 € ,(A4;). Moreover, every world w in the (£ — 1)th
layer is such that 1 € v,(¢,”), as well as 1 € v,(4,). This continues until the Oth layer, and, so, we
inductively get that 1 € v, (#,,), completing the proof. [ |

Corollary 3.3.3. LPQ*= is such that for any positive integral n, §,., ¥ ¢, -

Proof: it can be easily verified that for any formule ¢, ¢, we musthave ¢ — ¢ = ¢ = ¢, and so, we see
that M, ; models ¢, asitmodels ¢, by Theorem 3.3.2. Similarly, by the proof of Theorem 3.3.2,
we see that M, ; does not model ¢, in virtue of the fact that it does not model ¢,”. a fortiors, M
does not model ¢,”, and so M

n+1

.1 1s a suitable counter-model. n

Corollary 3.3.4. LPQ*= is such that for any positive integral n, §., ¥ 4, -

Proof: if ¢,., ¢, ,thend, ., = ¢, violating Corollary 3.3.3. [ |

Corollary 3.3.5. LPQ*= is such that for any positive integral n, §,7, ¥ &, -
Proof: the proof is similar to that of Corollary 3.3.3, and 9, , is a suitable counter-model. n

These results are nice, but do not guarantee that the logic is robustly contraction free, and work in
this area should be a priority if one wants to use LPQ*= for Candid (or even Naive) Set Theory - or,
in particular its (LPQ*="’s) derivatives which we shall see later on.

We now see LPQ®= is not suitable for the job. We shall see a problem with our second-order quanti-
fication, and will need to restrict it accordingly.

4 Identity and Second-Order Comprehension

Usually, when one uses second-order logic, it is is convenient to define identity using second-order
quantification. For example, here is such a typical way:

(x=y):= VX (Xx o le).

The issue with this approach (which is similar to the reasoning in [HP18, pp. 5-6] — who suggest that
in second-order LP, we ought to define identity as a primitive) in LPQ*= is that when we quantify
over the one-place predicates using V.X 1 we quantify over the predicate Ql, which is such that for
weWw, [w(QI) = (D, D). Le,, it holds - and, indeed, does not hold - for any object of the domain.
This, causes us to have that 0 € »,,(x = ) for any objects x, y € D. But this means that even for truly
identical objects, the identity claim is evaluated as (at least) false. This certainly is problematic if we
are taking our semantics seriously (which I hope to do).

What I suggest, (as suggested in [HP18] we could instead define identity as a primitive) is to modify
our logic so we can only quantify over the predicates in the vocabulary, and all the possible classical
predicates. In fact, the problem with identity is quite general: every second-order universal quantifier
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VX¢(X), where X is genuinely free in ¢, will, on these semantics turn out to be (at least) false — and
sentences of the form 3X¢(X), with X genuinely free in ¢, will turn out to be (at least) true. So,
I think this also provides further evidence for changing the logic. Let us see, then, what such a new
logic would look like; T will call it LPQ**=s to represent our restriction to only classical non-vocabulary
predicates.

4.1 LPQ*= Semantics

The only change, then, that we make to LPQ2=>, is that we restrict second-order quantification to
classical predicates, and those of the vocabulary. Our semantics are identical otherwise: the same
terms, formule, €. A prima facie justification for this change in semantics is that we do not want
to postulate more gluts than necessary: by only quantifying over classical predicates (that are not in
the vocabulary), we are not pre-supposing any gluts. If there are any glutty predicates, then they come
from our vocabulary and our interpretations in the models.

In order to restrict our attention to classical predicates and those already in the vocabulary, we define
727" to only add names for classical predicates — opposed to 77 which adds names for all paracon-
sistent predicates. Then, we ensure that if Q" € 77* “isa predicate but Q” ¢ 7, then for all w,
1,(Q") =(Q",Q7), where Q" n Q~ = @, ensuring that it is classical. And we still have the condition
that for all w,w' € W, I,(Q") = I,(Q"). Then our clauses for » use LPQ2C=>(TD’P[) instead of
LPQ*=(""):

* 1 € 3, (VX"$(X")) if and only if every n-place predicate Q" of LPQ* = (zP"") is such that
1 €,(4(Q")).

* 0 € 7, (VX"¢(X")) if and only if some 7-place predicate Q” of LPQ*= (7 7Y is such that
0 €v,(4(Q")).

Note, that all our results from subsection 3.3 still hold for LPQ*=.

4.2 Identity Re-visited

Let us now consider how identity works in LPQ**=. Defining it in the following way:

(x=y):= VXN (X 'y o le).

First, consider d; of the domain. Then, certainly, forallw € W, 1 € »,(d, = d;) on the above
definition, as 4 is in the same extensions and anti-extensions as itself by definition. If we consider d;
and d, of the domain, which are distinct elements of D, then there there is a classical predicate which
is (only) true of one, and (only) false of the other, so 0 € v, (d; = d,).

How, then, do we get glutty identity claims? First, we shall observe thatif 1 € »,(d; = 4,), then
d, = d, in the meta-theory; i.e., they are the same element of D. To see this: if 1 € v, (d; = d,) means
that 1 € v, (X'd, < X'd,) for every classical X', and as v, (X'd) = v, (X'd) for any worlds w, w',
by our definition, we must have that Y'd, holds where Y is the classical predicate that is only true of
d, and nothing else. This ensures d; = d, in the meta-theory. So, an identity claim d; = d,, of the
logic, is glutty if and only if O € v, (d; = d,) and d; = d,. To get 0 € v,(d; = d,) in this case, we need
a one-place predicate of the vocabulary which has a glut at 4; (or at d, as they are equal in the meta-
theory). So, we only have gluts in cases where there is genuine identity (from the perspective of the
meta-theory) and a glut occurs, at the point in question, for some predicate of the vocabulary.

xii



This, to me, seems like a nice characterisation of paraconsistent identity. And, I would be particularly
interested to see how it plays out in something like inconsistent arithmetic.

4.3 Second-Order Comprehension

The issue now, however, is that we cannot rely on second-order comprehension, which is also com-
monly used in classical second-order logic. Second-order comprehension is the the axiom schema,
such that for any ¢ with 7 free variables, we have

X"V o Vo, [ Xy x5, o S50, 5,)] -

Le., there is an z-place predicate, for any formula with 7 free variables such that they agree (from the
perspective of the logic) on truth and falsity. This means that we can quantify over first-order formule
in some sense (although not second-order).

The reason why this does not work in LPQ*=s is that we only can quantify over our predicates of
the vocabulary (which all have fixed arity), and the classical predicates. The classical predicates cannot
encode inconsistent information as they are classical, so can’t be used to encode information about
inconsistent sentences — which could always possibly exist. And the predicates of the language are

already being used.

Why this is a problem shall be explained in our next section, as it makes some things awkward for us
when we return to Naive Set Theory.

5 Naive Comprehension

Recall, then, the Axiom Schema of Naive Comprehension, where ¢(x) is a formula with all free vari-
ables among x:

IVx[x €y o ¢(x)].
If LPQ2C=> satisfied the second-order comprehension schema, we would be able to define the Axiom
Schema of Naive Comprehension as

VXIEIny [x €y <> Xlx] s
noting that it would no longer be a schema, but a single axiom.

We do not have that option available to us. And, so, if we are to use the power of second-order logiclz,
we need to rethink our approach. What I suggest, then, is that we return to a classical composition-
ality approach. That is to say, we indeed have our Axiom of Naive Comprehension (in LPQ*=),
which lets us use all sets defined by any arbitrary one-place classical predicate, in addition to the sets

corresponding to the one-place predicates of our vocabulary™.

12Certainly, we could still just add the Axiom Schema of Naive Comprehension. I am just running with the idea that
we should utilise second-order logic; and, at this point, the reader might be discouraged from using second-order logic in
Naive Set Theory. I think this is a valid response.

31t would be beneficial to ensure that the model has interpretations and names for all the “restricted” versions of pre-
dicates in the language: thatis, for » > 1, if P” is an n-place predicate, then for each ¥ € D", thereis a predicate P,
which is a one-place predicate defined to be P*Xy, with y free — and, in addition, it would be beneficial to ensure that y
could appear in any position of the predicate. Otherwise, we would need an axiom schema allowing all atomic formulz
of our logic to have a corresponding set. — This is a valid criticism: we still have to deal with all these cases. But, I am just
going “all in” on our Second-Order quantification in LP *,
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But, in this context, the Axiom of Naive Comprehension does not entail the Axiom Schema of Naive
Comprehension, so we need to add extra axioms to do that work for us. I suggest we add axioms,
much like the axiom of union to our formulation of Naive Set Theory. Le., we add an axiom - one
for each operator of our logic: A, =, Vi, VX, and = such that given the sets corresponding to ¢(x)
and ¥ (x), we can construct the sets corresponding to ¢(x) A ¥(x), 7(x), Vap(x), &.

We can easily justify the first two. For conjunction, add an Axiom of Intersection:
VxVyEIth[(tex/\tey) <—>t€z],

and so given {x; ¢(x)} and {x; ¥ (x)}, we can construct {x; ¢(x) A ¥(x)}; the sets corresponding to
¢(x) and ¢ (y) exist by a suitable induction hypothesis.

We can also add an Axiom of Complements:
VxdzVe [t ¢ x > 1 € 2],

which allows us to construct {x; =¢(x)} from {x; ¢(x)}. Which is also easy to justify naively (just
look at naive set theory in mathematical practice).

Now, what do we do for first and second order quantification and for the (non-contraposing) condi-
tional? Quantification I shall, regrettably, leave for this essay.

For the conditional, then we want the following axiom:
VxVyEIth[(tExztey) <—>t€z],

allowing us to construct {x; ¢(x) = ¥ (x)} given {x; ¢(x)} and {x; ¥(x)}. But, how would we
justify such an axiom?

We revise our semantics again. The issue with justifying this axiom, for me, in LPQ2C=>, is as fol-
lows. My hope is that we use Candid Set Theory as our meta-theory, and reformulate Candid Set
Theory inside our meta-theory. But, with our current modal semantics, it is impossible for us, from
the perspective of the actual world in our model, to tell what other worlds there are. So, the truths
here depend on things we cannot know, for our meta-theory is unable to tell as as our meta-theory
depends on those facts — and so there is a vicious cycle.

Therefore, I believe we need to incorporate into LPQ**= the (very strong) principle, that for any
theory 7', for each structure M, N of our logic (which will be a sub-logic of LPQ*=) that validates
T (i., is a model of T), if Iom = Iyn (noting that this also requires that D™ = Dm, and M, N
are structures of the same vocabulary), then 9t = . Thus, that the entire structure is completely
determined by how it treats the atomic formulz in the actual world.

So, from the perspective of the actual world, we can deduce the entire structure. This justifies our
use of the logic as our meta-theory, for we can, from the perspective of the actual world, deduce the
structure of the entire model.*

Thus, this justifies our use of
VaVydeVe[(tex =t ey) o tez],
because everything is already determined in the actual world.

Let us see the final version of our logic. I call it LPQ2C=>@, for the modal part (coming from our
conditional) depends only on the actual world.

T se “we’ very loosely here — I mean something like “logic itself” as I am a realist; literal ‘we’ works for anti-realists.
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5.1 A Final Semantics

. @,
Our logic, LPQ*=" is almost exactly the same as LPQ*= but we “prune” some models, so that
given two 7-structures, I, N, with the same domain D and satisfying the same theory 7" in question,
are such that if they agree on the truth values (i.e., glutty iff glutty; only true iff only true; only false

iff only false) of every atomic formula of LPQ*= (") at the actual world, then 9t = N. The only

. . , @ .
difference is that in LPQ*=" we do not allow any worlds to agree on all the same atomic formulz;
ie., forallw,w' € W, 1, = I, implies thatw = w'.

We give a method to choose the “true model” from any number of candidates.

Assume we have M — aset of 7-structures M, all satistying 7', and all on the same domain D, but each
I is distinct from all the others. First, we calculate, for each M € M, |WEUE |. We then discard or
prune those models that do not have the maximal number of worlds.

This is the first principle: we prefer a maximal number of worlds. The reasoning for this is that it
“pushes” the fully inconsistent world (which must appear if there is a maximal number) “further”
into the model, and so is preferring consistency to inconsistency.

Then, if we still do not only have one model, we invoke our second principle: we prefer less truth —
for we (at least I) see truth as requiring more of a burden than falsity to be the case. So, we count the
number of atomic formulz ¢ that are such that 1 € [ m (@) for each N still in M, and we keep only
those models with the least number of true atomic formule in the actual world.

Finally, if that is still not enough, we, unfortunately, invoke a somewhat arbitrary principle that settles

the matter fully. Assuming the axiom of choice, well-order the atomic sentences of LPQ2C=>(2'D il [)
as ¢,, where « is an ordinal. Then, repeat the following process, until we only have one element in
M., which does eventually terminate — for otherwise every model would be the same, which would
only leave us with one model. Choose the models 9t in M so that they difter from all the others with
respect to Jym (¢[g), for the least 2.

Note, the results of subsection 3.3 hold for LP ZC:@, as the models used in Theorem 3.3.2 are the
uniquely determined maximal models given the actual world; we do not need to consider the second
or third principles.

6 Conclusion

I gave reasons for why I believe that Candid Set Theory should replace Naive Set Theory. This took
us on a path of exploring second-order paraconsistent logic. We saw a basic logic LPQ*=, which
was not suitable for purpose; so, we moved to LPQZC=>. Because I am sensitive to the idea that we

should embed Candid Set Theory inside itself, I justified a final move to LP 2% We saw that
the properties of subsection 3.3 still hold for LP 2C=>@, giving us some, albeit, not much hope that
LPQ*=" can support Naive Set Theory.

. . @, . . .

What we did not see, is that LPQ2°=> is robustly contraction free, nor did we examine, in any de-
. . a1 @ . @

tail, the inferences possible in LPQ**=" . Moreover, we did not show that LPQ**=" could support

Naive Set Theory, and we did not prove that if LPQ2°=>@ could support Naive Set Theory, then we
would have models of Candid Set Theory. I suggest these things for interested readers in the future.

A possible roadmap for engagement with Candid Set Theory in LP 2% s

* Check whether LPQZC=>@ has any totally objectionable inferences.
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* Prove LPQ*=" is robustly contraction free.
* Prove LPQ2C=>@ can support Naive Set Theory.
* Prove LPQ2C=>@ can support Candid Set Theory — and examine such models.

Any one of these steps could fail, and in which case the project, at least using LPQ2C=>@, would have
to be abandoned. The goal then would be to find another logic suitable for Candid Set Theory, which

may not be second-order.
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