
Naïve Set/Class Theory and Second-Order
Paraconsistent Logic

William J Angus

Supervised by Dr Aaron Cotnoir

I hereby declare that the attached piece of written work is my own work
and that I have not reproduced, without acknowledgement, the work of

another.



1 Introduction
Naïve Set Theory is a theory of sets using at least the Axiom of Extensionality:

∀𝑥∀𝑦 [𝑥 = 𝑦 ↔ ∀𝑧 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)] ,

and the Axiom Schema of Naïve Comprehension, where 𝜙(𝑥) is a formula with all free variables
among 𝑥:

∃𝑦∀𝑥 [𝑥 ∈ 𝑦 ↔ 𝜙(𝑥)] .

The former axiom asserts the main feature of sets: they are equal if and only if they have the same
elements. I.e., sets are defined totally by their elements. The latter axiom schema asserts that for any
formula with at most 𝑥 free, there is a set corresponding to such a formula, in the sense that the set
contains only and all those objects satisfying the formula.

The interest in Naïve Set Theory stems from the view that, as Weber [Web12, p. 288] puts it, “the
naïve view of sets is as predicates in extension” (diacritics my own). However, classically, such a view
is impossible. The typical example is the Russell Class – first presented in a letter to Frege, by Russell,
demonstrating the issue with his Basic Law V, which is roughly equivalent to our modern Axiom
Schema of Naïve Comprehension. The Russell Class is defined as

𝑅 ≔ {𝑥; 𝑥 ∉ 𝑥} ,

where this notation says that 𝑅 is the unique set satisfying the Axiom Schema of Comprehension
where 𝜙(𝑥) ≔ 𝑥 ∉ 𝑥. However, if such a class were to exist, then Naïve Set Theory, formulated
classically, would be trivial, as the Russell Class can be used to create, classically, a contradiction: we
see 𝑅 ∈ 𝑅 implies 𝑅 ∉ 𝑅; and, we see 𝑅 ∉ 𝑅 implies 𝑅 ∈ 𝑅. Both follow from the fact that 𝑅 contains
only and all those sets that do not contain themselves. From this, we can deduce that 𝑅 ∈ 𝑅 if and
only if 𝑅 ∉ 𝑅, and, due to the Law of ExcludedMiddle, we must have a contradiction.

So, supporters ofNaïve SetTheoryhavebeen forcedout ofusing classical logic. Perhaps themost naïve
approach is of those who wish to simply accept that sets like the Russell Class exist, and, moreover,
are contradictory. That is the tradition of using paraconsistent logics (i.e., a logic that has non-trivial
models with true contradictions – i.e., denies the explosion or ex falso quodlibet) to formulate Naïve
Set Theory. Notably, such philosophers include, Brady [Bra89], Priest [Pri06, Chapter 18], Restall
[Res92], andWeber [Web10].

In this essay, I begin, in section 2, by saying that I believe, in addition to the Axiom of Extensionality,
and theAxiomSchema ofNaïveComprehension, thatmodels ofNaïve Set Theory should also satisfy
a principle that I call the “Principle ofDefinability”, which says that for each set there is a formulawith
at most 𝑥 free such that the elements of the set are all and only those objects satisfying the formula. I
call this “Candid Set Theory”.

From there on, I outline why second-order logic may be the best place to turn to construct suchmod-
els. And, starting from section 3, I outline a basic second-order paraconsistent logic, whichwemodify
from there on to produce a (hopefully) more suitable logic for the task. Notably, I will not attempt
to construct a model of Naïve Set Theory in this logic, let alone Candid Set Theory. As we shall see,
in section 4 and section 5, there are problems with second-order paraconsistent logics that first need
to be settled before they can be used for such a task.

In section 4, I show that it is unfeasible to quantify over all possible paraconsistent predicates, and
instead suggest thatwequantify over only classical predicates and the predicates in the language.
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Finally, in section 5, I explore an alternative method of validating the Axiom Schema of Naïve Com-
prehension, given we can no longer quantify over all formulæ of the logic, due to our results in sec-
tion 4, as is often possible with second-order logics. This gives a more classical flavour to Naïve Set
Theory, which may be regarded as a disadvantage to some. This also raises questions about our se-
mantics, which I use to justify a final version of our basic logic for (hopefully) future use in the field
of Candid Set Theory formulated using second-order paraconsistent logics.

1.1 Notation
Throughout, I shall use the∧ for conjunction,∨ for disjunction,¬ for negation,∀ for universal quan-
tification, and ∃ for existential quantification. First-Order variables will be written as lowercase latin
letters, usually from the end of the alphabet: 𝑥, 𝑦, 𝑧,&c., and second-order variable will be written as
uppercase latin letters, again, usually from the end of the alphabet: 𝑋, 𝑌, 𝑍,&c. Often, the arity of
the predicate is written as a super script: for example𝑋1,𝑋3, 𝑌10,&c. I will write 𝜙(𝑥) to mean that
the free first-order (and free second-order) variables are at most the first-order variable 𝑥, and, simil-
arly, I will write 𝜙(𝑋) to mean that the free second-order (and free first-order) variable are at most the
second-order variable𝑋.

2 Candid Set Theory

2.1 What?
I nowargue forwhat I call “Candid SetTheory”1. This extendsNaïve SetTheorywith anewprinciple,
which I shall call the “Principle of Definability”:

Given a set 𝒮, there is a formula 𝜙(𝑥), of the underlying logic, where at most 𝑥 is free, such
that for any object 𝑦 of the domain, 𝑦 ∈ 𝒮 if and only if 𝜙(𝑦) holds.

Unless we are able to quantify over formulæ (or at least those formulæ with at most 𝑥 free) in our
logic, there is no way to add this as an axiom to Naïve Set Theory. I am not aware of any such sys-
tems. This seems like a property of models. In essence, the Principle of Definability says, to use typical
model-theoretic terminology, every set is pointwise-definable in the model. Candid Set Theory, then,
is a restriction on themodels ofNaïve Set Theory to only thosemodels inwhich every set is pointwise-
definable. Suchmodels ofZF have been considered byHamkins, Linetsky, andReitz [HLR13]. Not-
ably, they are necessarily countable models.

2.2 Why?
Why, then, do I think we ought to restrict our attention to such models, by adding the Principle of
Definability to Naïve Set Theory? I will present three arguments; all rely on the fact the reader is
already sensitive to the Naïve View. The first shall be directed to those who believe logic is a model of
language – i.e., logical anti-realists. The second shall be directed to those who believe logic is a model
of “consequence in nature” – i.e., logical realists. The third shall be more general.

The first argument, then, directed toward logical anti-realists who already accept Naïve Set Theory,
is: it would seem bizarre if in our models of set theory, we had undefinable sets: for there would be
no way to make inferences about the properties of an individual such set – only them all as a whole,
through quantification. But this universe of sets is supposed to arise from logic as amodel of language

1Naïve Set Theory ain’t naïve ’nuff.

ii



– and the naïve view of these sets is that they are, again, to quoteWeber, “predicates in extension”. So,
there would be sets in our models, which are supposedly “predicates in extension” but there would
be no such predicate defining them. This seems ontologically unnecessary, and very bizarre. But, of
course, this is not a water-tight argument and so I’m sure there are those who’d disagree.

The second argument is: if logic is a model of real, actual consequence in the world, then such a logic
would not be able to make inferences about the individual sets, for there would be no way to pick out
the individual (in fact, this view – the one of the second argument – seems to bemaking the claim that
any model of the universe should be pointwise-definable, which is of course a very strong statement),
and derive its properties. If the logic were able to do such a thing, then it must be able to pick out
each set, using logical formulæ, which would make the set definable. This seems strange: for there
are uncountably many real numbers, and I am claiming there are only countably many. We return to
this reasoning shortly: I shall address the objection that Candid Set Theory restricts our attention to
countable models.

Moreover, another objection to this second argument is thatwe only have epistemic access to a portion
of true logical consequence: we cannot see the whole thing, and cannot appreciate the full power of
logical consequence. Thus, those sets that were not pointwise-definable, may only be not pointwise-
definable in virtue of the fact that we cannot reason about them, due to our limited epistemic access,
but that the true logical consequence2 of nature can, in fact, reason about such sets, and provide them
with names.

The third is: surely “being a member of the set 𝒮” is a predicate, and so this is the defining predicate
of the set. However, notably, in writing this argument, I am giving 𝒮 a name, which is assuming it is
pointwise-definable. And so, taking what I’ve said at face-value can be seen to be question-begging.
On the other hand, it seems like there is a naïve simplicity to this view, which is very appealing, at least
to me: for every set, there is a predicate, which is “being a member of that set” – but, perhaps, this is
assuming a name for the set, even in this case, in which case I amquestion-begging. I do not believe so,
for I think such a predicate is mind and language independent (I am a logical realist), and so there is a
real property (and hence predicate) of being a member of an arbitrary set, without requiring a name
for the set. This is the most appealing, to myself, of the arguments I have given, but certainly may not
convince anyone else!

Again, the objection that we only have access to a fragment of true logical consequence stands against
this argument.

Another objection onemight have to the view that Candid Set Theory should replace Naïve Set The-
ory is that I am essentially saying we want to restrict our attention to countable models of Naïve Set
Theory – just as in the case with [HLR13]3. However, Read in conversation with Weber [Web12,
p. 288] believes this is a good thing, as being uncountable is a limitative result. I however, would say
the discussions about cardinality are not helpful: these are results about cardinality in a classical meta-
theory. I believe that we want to use Candid Set Theory as our meta-theory, and re-formulate Candid
Set Theory inside itself. Priest [Pri06, p. 259] agrees with this sentiment: “in the model theory of
paraconsistent logic, wemust therefore use paraconsistent set theory” – only I take the true “paracon-
sistent set theory” to be Candid Set Theory; and, as we shall see shortly, I propose model-theoretic
semantics for our logic of choice.

In this case, we should only be worried about cardinality from the perspective of the logic itself –
2Or, indeed, logical consequences...
3There are countably many formulæ, so for there to exist a formula defining each set, there must be countably many

sets.
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and we know from our experience of Skolem’s paradox, which says there are countable models of set
theory, and in those models, there are still “uncountable” sets – in the sense that there is no injection
from such a set into thenatural numbers inside themodel. So, if such a countablemodel ofZFwere our
meta-theory, it does not seem to matter what a more general classical meta-theory would have to say
about cardinality – only the “true meta-theory”, which I would take to be Candid Set Theory.

I think, then, the charge against Candid Set Theory that it only admits countable models is question
begging: for someone would only accept this charge if they already accept a meta-theory different
from Candid Set Theory. Of course, this response does not provide evidence for Candid Set Theory,
it merely responds to the objection that the models are countable.

Even if one is not receptive tomy arguments for restricting our attention totally toCandid SetTheory,
Candid SetTheory can still be of interest toNaïve SetTheorists. This is in the sameway thatHamkins,
Linetsky, and Reitz were interested in looking at pointwise-definable models of ZF. We are interested
in models where we can “talk” about everything that exists individually. Certainly, though, this does
not provide philosophical justification for Candid Set Theory, but motivates it from a position of
interest.

2.3 How?
How, if one is interested in the project ofCandid Set Theory, should one go about it? It is not obvious
that the Principle ofDefinability holds in themodels ofNaïve SetTheory already considered. E.g., the
non-trivial models of Naïve Set Theory in the relevant logicsDKQ and TKQ, constructed by Brady
in [Bra06, p. 242]. And, if it’s anything like the issues withZF discussed in [HLR13], then significant
study is required of the current models of Naïve Set Theory, to check if the Principle of Definability
holds.

So, I suggest in order to make it more likely that the Principle of Definability holds, we should take
a look at second-order logic. Just as classical second-order logic dramatically ramps up the expressive
power of classical first-order logic, the hope is that second-order paraconsistent logic will do the same
for us. The hope, then, is that our models of Naïve Set Theory, will turn out to be the models of
Candid Set Theory also. However, I do not have time to examine if we do get these results. That
is something for future research. For now, this is a motivation for looking at Naïve Set Theory in a
second-order paraconsistent context.

So, let us proceed, and see a basic paraconsistent logic, which we shall slowly make changes to.

3 A Basic Logic
I will now introduce a basic logic that we shall modify from here on. This is a logic which extends
the quantified version of the Logic of Paradox (LP), which was first explored by Priest in [Pri79]. The
semantics for this logic are based on those given by Priest in [Pri06, p. 85]. It would be ideal to be
able to use LP as our logic of choice, extending it into the Second-Order, but, it has been shown by
Forster [BFS13] (the paper also includes a strengthening of this result by Seligman, and some further
thoughts from Beall) that LP cannot have any real conditional: if→ is a conditional operator, and
𝐴 → 𝐵,𝐴 ⊨ 𝐵, then, in fact,𝐴 → 𝐵 ⊨ 𝐵. Which, of course, makes any conditional of LP useless for
axiomatising, in any seriousway,Naïve SetTheory. Hence, weproceedby adding our own conditional
to LP.
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3.1 First-Order Semantics
Our first parse of our logic will be the first-order fragment. Here, we are simply extending quanti-
fied LP (which is written as LPQ for short) with a suitable conditional. To do this, we use modal-
semantics. The resulting logic will be called LPQ⇒ as we add the conditional ‘⇒’ to LPQ.

First, we’ll define our well-formed formulæ. Given a vocabulary4 𝜏, we define the set of LPQ⇒-
formulæ given 𝜏, denoted LPQ⇒(𝜏). We do not allow 0-ary functions or relations.

The terms of LPQ⇒(𝜏) are the smallest set satisfying:

• first-order variables: 𝑥, 𝑦, 𝑧,&c. are terms of LPQ⇒(𝜏);

• if 𝑐 is a constant symbol in 𝜏, then 𝑐 is a term of LPQ⇒(𝜏); and

• if 𝑓 is an 𝑛-ary function symbol in 𝜏, and 𝑡1, … , 𝑡𝑛 are terms of LPQ⇒(𝜏), then 𝑓(𝑡1, … , 𝑡𝑛) is a
term of LPQ⇒(𝜏).

The atomic formulæ of LPQ⇒(𝜏) are the smallest set satisfying:

• if 𝑅 is an 𝑛-ary relation symbol in 𝜏, and 𝑡1, … , 𝑡𝑛 are terms of LPQ⇒(𝜏), then 𝑅𝑡1 ⋯ 𝑡𝑛 is an
atomic formula of LPQ⇒(𝜏).

Then, LPQ⇒(𝜏) is the smallest set satisfying:

• the atomic formulæ of LPQ⇒(𝜏) are all in LPQ⇒(𝜏); and

• if 𝜙, 𝜓 ∈ LPQ⇒(𝜏) and 𝑥 is a variable, then (𝜙 ∧ 𝜓), ¬𝜙, (𝜙 ⇒ 𝜓), and∀𝑥𝜙 are in LPQ⇒(𝜏).

As usual, we omit brackets (or, use square brackets) when the resulting meaning is still clear. We treat
𝜙 ∨ 𝜓 as an abbreviation for ¬(¬𝜙 ∧ ¬𝜓), and ∃𝑥𝜙 as an abbreviation for ¬∀𝑥¬𝜙. We say a variable is
bound if it satisfies the standard conditions, and free otherwise; we call a formula with no free variable
a sentence.

Given a vocabulary 𝜏, we define a 𝜏-structure of LPQ⇒ as a ⟨𝑊,𝐷, 𝑅, 𝐼, @⟩ quintuple, consisting
of𝑊 a set of worlds (which are arbitrary objects), 𝐷 a non-empty set of objects, which shall act as
our domain, 𝑅 a binary relation on𝑊, 𝐼 an interpretation function that takes a world and an atomic
sentence from LPQ⇒(𝜏𝐷)5 and maps to to a non-empty subset of {0, 1} – as well as interpreting,
world independently, functions and constants, and a distinguished element of@ ∈ 𝑊, which acts as
the “actual world”. The entire domain𝐷 is available at every world.

Our interpretation function 𝐼, then has two main roles: to correctly pick out the correct element of
the domain given a term, and to evaluate atomic sentences at any given world. The latter role depends
on the former. The former requires we give an interpretation to the constants and functions in our
vocabulary. So, if 𝑐 ∈ 𝜏 is a constant, we require that 𝐼(𝑐) is defined, and maps to some element of
𝐷. Also, if 𝑓 ∈ 𝜏 is an 𝑛-ary function, we require that 𝐼(𝑓) is defined, and maps to some some 𝑛-
ary function on 𝐷. Then, given a term 𝑡 of LPQ⇒(𝜏), 𝐼 can inductively return the corresponding
element of𝐷. Note: all of this is world-independent.

In addition to supplying this information for terms andconstants,wemust thendefine,world-relatively,
the extension and anti-extension of each predicate 𝑃 ∈ 𝜏. I.e., 𝐼(𝑤, 𝑃) = 𝐼𝑤(𝑃) = ⟨𝑃+, 𝑃−⟩, where
𝑃+∪𝑃− = 𝐷𝑛 (where 𝑛 is the arity of𝑃), and𝑃+ denotes the set of 𝑛-tuples in𝐷 ofwhich𝑃 holds, and

4A set containing our function, relation, and constant symbols.
5This represents the language when we add a name for each element of the domain to 𝜏 – we will write 𝑑 ∈ 𝐷 for the

name of the object 𝑑.
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𝑃− denotes the set of 𝑛-tuples in𝐷 of which 𝑃 is false. 𝑃 is classical, then if and only if 𝑃+ ∩ 𝑃− = ∅.
𝑃+ is the extension of 𝑃, and 𝑃− is the anti-extension of 𝑃.

Then, given an atomic sentence 𝑃𝑛𝑡1 ⋯ 𝑡𝑛 of LPQ⇒(𝜏𝐷), where 𝑃𝑛 is an 𝑛-ary predicate and 𝑡1, ⋯, 𝑡𝑛
are terms ofLPQ⇒(𝜏𝐷), we can define 𝐼(𝑤, 𝑃𝑛𝑡1 ⋯ 𝑡𝑛) = 𝐼𝑤(𝑃

𝑛𝑡1 ⋯ 𝑡𝑛) in the following way: we write
⟨𝑃+, 𝑃−⟩ = 𝐼𝑤(𝑃

𝑛); and say1 ∈ 𝐼𝑤(𝑃
𝑛𝑡1 ⋯ 𝑡𝑛) if andonly if ⟨𝐼(𝑡1), ⋯ , 𝐼(𝑡𝑛)⟩ ∈ 𝑃

+; and0 ∈ 𝐼𝑤(𝑃
𝑛𝑡1 ⋯ 𝑡𝑛)

if and only if ⟨𝐼(𝑡1), ⋯ , 𝐼(𝑡𝑛)⟩ ∈ 𝑃
−. This lets 𝐼 fulfil its latter role.

We require 𝑅 have the following three restrictions: first, for all 𝑤 ∈ 𝑊, @𝑅𝑤. Second, a “semi-
irreflexivity” condition: 𝑤𝑅𝑤 for 𝑤 ∈ 𝑊 implies that 𝑤 = @. Third, for all 𝑤, 𝑤′ ∈ 𝑊, we require
that for any atomic sentence 𝜙 of LPQ⇒(𝜏𝐷) that 𝑤𝑅𝑤′ implies that 𝐼𝑤(𝜙) ⊆ 𝐼𝑤′(𝜙)

Given a 𝜏-structure, we define a valuation function 𝜈, which takes a world and a sentence, and maps
it to a non-empty subset of {0, 1}. We often write 𝜈𝑤(𝜙) instead of 𝜈(𝑤, 𝜙).

We can define 𝜈 recursively as follows for𝔐 = ⟨𝑊,𝐷, 𝑅, 𝐼, @⟩:

• if 𝜙 is atomic, then for all 𝑤 ∈ 𝑊, 𝜈𝑤(𝜙) = 𝐼𝑤(𝜙);

• if 𝜙 = (𝜓 ∧ 𝜒), then for all 𝑤 ∈ 𝑊, 1 ∈ 𝜈𝑤(𝜙) if and only if 1 ∈ 𝜈𝑤(𝜓) and 1 ∈ 𝜈𝑤(𝜒); and
0 ∈ 𝜈𝑤(𝜙) if and only if 0 ∈ 𝜈𝑤(𝜓) or 0 ∈ 𝜈𝑤(𝜒);

• if 𝜙 = ¬𝜓, then for all 𝑤 ∈ 𝑊, 1 ∈ 𝜈𝑤(𝜙) if and only if 0 ∈ 𝜈𝑤(𝜓); and 0 ∈ 𝜈𝑤(𝜙) if and only if
1 ∈ 𝜈𝑤(𝜓);

• if 𝜙 = ∀𝑥𝜓(𝑥), then for all 𝑤 ∈ 𝑊, 1 ∈ 𝜈𝑤(𝜙) if and only if for all 𝑑 ∈ 𝐷, 1 ∈ 𝜈𝑤(𝜓(𝑑)); and
0 ∈ 𝜈𝑤(𝜙) if and only if for some 𝑑 ∈ 𝐷, 0 ∈ 𝜈𝑤(𝜓(𝑑)); and

• if 𝜙 = (𝜓 ⇒ 𝜒), then for all 𝑤 ∈ 𝑊, 1 ∈ 𝜈𝑤(𝜙) if and only if for all 𝑤
′ ∈ 𝑊 such that 𝑤𝑅𝑤′,

1 ∈ 𝜈𝑤′(𝜓) implies that 1 ∈ 𝜈𝑤′(𝜒); and 0 ∈ 𝜈𝑤(𝜙) if and only if for all 𝑤
′ ∈ 𝑊 such that 𝑤𝑅𝑤′,

1 ∈ 𝜈𝑤′(𝜓) implies that 0 ∈ 𝜈𝑤′(𝜒).

We shall now define logical consequence for LPQ⇒. Given 𝛤 a set of sentences of LPQ⇒(𝜏), and a
sentence 𝜙 ∈ LPQ⇒(𝜏), we write𝛤 ⊨ 𝜙 if and only if for every 𝜏-structure ⟨𝑊,𝐷, 𝑅, 𝐼, @⟩where for
the corresponding valuation function, 𝜈, 1 ∈ 𝜈@(𝛾) for each 𝛾 ∈ 𝛤, we also have that 1 ∈ 𝜈@(𝜙).

In addition to⇒, we can define a conditional→, which contraposes, as (𝜙 → 𝜓) ≔ (𝜙 ⇒ 𝜓) ∧
(¬𝜓 ⇒ ¬𝜙). In practice,→ will be our conditional of choice, but, if for some reason it turns out
troublesome, we can always switch to⇒ and give up contraposition – the reader can provide a simple
counter-model. The semantics for this conditional are worked out in full here for an easier time writ-
ing (and reading) proofs:

• 1 ∈ 𝜈𝑤(𝜙 → 𝜓) if and only if for all𝑤′ ∈ 𝑊 such that𝑤𝑅𝑤′, 1 ∈ 𝜈𝑤′(𝜙) implies that 1 ∈ 𝜈𝑤′(𝜓);
and 0 ∈ 𝜈𝑤′(𝜓) implies that 0 ∈ 𝜈𝑤′(𝜙).

• 0 ∈ 𝜈𝑤(𝜙 → 𝜓) if and only if either for all 𝑤′ ∈ 𝑊 such that 𝑤𝑅𝑤′, 1 ∈ 𝜈𝑤′(𝜙) implies that
0 ∈ 𝜈𝑤′(𝜓); or for all 𝑤

″ ∈ 𝑊 such that 𝑤𝑅𝑤″, 0 ∈ 𝜈𝑤″(𝜓) implies that 1 ∈ 𝜈𝑤″(𝜙).

We define the bi-conditionals: (𝜙 ↔ 𝜓) ≔ ((𝜙 → 𝜓) ∧ (𝜓 → 𝜙)), (𝜙 ⇔ 𝜓) ≔ ((𝜙 ⇒ 𝜓) ∧ (𝜓 ⇒
𝜙)).

3.2 Second-Order Semantics
WeextendLPQ⇒, adding semantics for second-orderquantification, calling the resulting logicLPQ2⇒,
and writing LPQ2⇒(𝜏) for the set of LPQ2⇒-formulæ.
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The atomic formulæ of LPQ2⇒(𝜏) are the smallest set satisfying:

• the atomic formulæ of LPQ⇒(𝜏); and

• if 𝑋𝑛 is an 𝑛-ary second-order variable, and 𝑡1, … , 𝑡𝑛 are LPQ⇒(𝜏)-terms, then 𝑋𝑛𝑡1 ⋯ 𝑡𝑛 is an
atomic formula of LPQ2⇒(𝜏).

So LPQ2⇒(𝜏) is the smallest set satisfying:

• the atomic formulæ of LPQ2⇒(𝜏) are all in LPQ2⇒(𝜏); and

• if 𝜙, 𝜓 ∈ LPQ2⇒(𝜏), 𝑥 is a first-order variable, and𝑋 is a second-order variable, then (𝜙 ∧ 𝜓),
¬𝜙, (𝜙 ⇒ 𝜓), ∀𝑥𝜙, and ∀𝑋𝜙 are in LPQ2⇒(𝜏).

Then, ∃𝑋𝜙 ≔ ¬∀𝑋¬𝜙. And, we define the concept of being bound for second-order variables ana-
logously to first-order variable; and a second-order variable that is not bound is free. A sentence of
LPQ2⇒(𝜏) is any𝜙 ∈ LPQ2⇒(𝜏)withno free variables (whether theybefirst or second-order).

Given a vocabulary 𝜏, we define a 𝜏-structure of LPQ2⇒ as ⟨𝑊,𝐷, 𝑅, 𝐼, @⟩, just as in LPQ⇒. We
impose the same conditions on𝑊,𝐷,𝑅, 𝐼,@, and logical consequence, but relativised toLPQ2⇒. In
addition, however, 𝐼 is defined to take an atomic sentence from LPQ2⇒(𝜏𝐷,𝛲), where 𝜏𝐷,𝛲 is defined
to extend 𝜏𝐷 with a name for each possible 𝑛-place predicate6 defined on𝐷. Moreover, if𝑄 is a pre-
dicate in 𝜏𝐷,𝛲, but not in 𝜏, then we require that for all 𝑤, 𝑤′ ∈ 𝑊, 𝐼𝑤(𝑄) = 𝐼𝑤′(𝑄) – and, we require
that for each possible 𝑛-place paraconsistent (including consistent) predicate𝑄𝑛7, there is a name𝐾𝑛

for a predicate in LPQ2⇒(𝜏𝐷,𝛲) such that 𝐼(𝐾𝑛) = 𝑄𝑛.

𝜈 is as for LPQ⇒, but with a new clause for the second-order quantifier case:

• 1 ∈ 𝜈𝑤(∀𝑋
𝑛𝜙(𝑋𝑛)) if and only if every 𝑛-place predicate 𝑄𝑛 of LPQ2⇒(𝜏𝐷,𝛲) is such that

1 ∈ 𝜈𝑤(𝜙(𝑄
𝑛)).

• 0 ∈ 𝜈𝑤(∀𝑋
𝑛𝜙(𝑋𝑛)) if and only if some 𝑛-place predicate 𝑄𝑛 of LPQ2⇒(𝜏𝐷,𝛲) is such that

0 ∈ 𝜈𝑤(𝜙(𝑄
𝑛)).

That is, we can quantify over all possible extension anti-extension pairs, so long as every 𝑛-tuple for 𝑛
the arity of the predicate, appears in at least the extension or the anti-extension. We see, in section 4,
that this is problematic, and restrict ourselves to quantifying over fewer predicates – defining a new
logic, which will have the same properties discussed in the next subsection as LPQ2⇒.

3.3 Some Properties of LPQ2⇒
Here, we see some properties of LPQ2⇒(𝜏). The first is a general property that gives good pragmatic
reason toworkwith the logic. Roughly, the truth values always filter forward into anyworld accessible
from any given world.

The second results are about contraction. We will show that the conditionals⇒ and→ of LPQ2⇒
are (𝑛 + 1)/𝑛 contraction free. This is not enough to guarantee that the logic is able to support Naïve
Set Theory however. Restall [Res93] has conjectured that a logic is able to support Naïve Set Theory
if and only if it is robustly contraction free. We say that a logic is robustly contraction free if and
only if there is no operator > such that 𝐴 → 𝐵 ⊨ 𝐴 > 𝐵, 𝐴,𝐴 > 𝐵 ⊨ 𝐵, and 𝐴 > (𝐴 > 𝐵) ⊨
𝐴 > 𝐵, for our conditional of choice →. And Restall proves, in the same paper, that if a logic is
not robustly contraction free, it cannot support Naïve Set Theory (without the model of Naïve Set

6In the paraconsistent sense: a pair with an extension and anti-extension, covering all of𝐷𝑛.
7I.e., extension, anti-extension pair covering𝐷𝑛.
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Theory being trivial). We will not be able to prove that result here, however, but we are able to show
that the conditionals are (𝑛 + 1)/𝑛 contraction free.

3.3.1 Truth/Falsity of Sentences Filters Forward

Let us write 𝑦⋆ to denote the application of the function ⋅⋆ ∶ {0, 1} → {0, 1} which is defined to be
the only non-identity permutation of {0, 1} (i.e., classical negation).

Theorem 3.3.1. Let𝔐 ≔ ⟨𝑊,𝐷, 𝑅, 𝐼, @⟩ be a 𝜏-structure, 𝜙 ∈ LPQ2⇒(𝜏𝐷,𝛲) a sentence, and 𝜈 the
valuation function corresponding to𝔐. Then, for any𝑤 ∈ 𝑊, 𝑥 ∈ {0, 1}, and𝑤′ ∈ 𝑊 such that𝑤𝑅𝑤′,
𝑥 ∈ 𝜈𝑤(𝜙) implies that 𝑥 ∈ 𝜈𝑤′(𝜙).

Proof: we shall proceed by induction on the complexity of 𝜙. Our basis case, when 𝜙 is atomic, holds
by definition. We have different cases to consider for our induction step:

Negation If 𝜙 = ¬𝜓, then 𝑥 ∈ 𝜈𝑤(𝜙) implies that 𝑥⋆ ∈ 𝜈𝑤(𝜓), and, so, by our induction hypothesis,
𝑥⋆ ∈ 𝜈𝑤′(𝜓) for all 𝑤

′ such that 𝑤𝑅𝑤′, and so, 𝑥 ∈ 𝜈𝑤′(𝜙).

Conjunction If 𝜙 = (𝜓 ∧ 𝜒), then 1 ∈ 𝜈𝑤(𝜙) implies that 1 ∈ 𝜈𝑤(𝜓) and 1 ∈ 𝜈𝑤(𝜒), and, so, by
our induction hypothesis, 1 ∈ 𝜈𝑤′(𝜓) and 1 ∈ 𝜈𝑤′(𝜒), for all 𝑤

′ such that 𝑤𝑅𝑤′, and, so, 1 ∈ 𝜈𝑤′(𝜙).
Alternatively, if 0 ∈ 𝜈𝑤(𝜙), then, 0 ∈ 𝜈𝑤(𝜓) or 0 ∈ 𝜈𝑤(𝜒), and, so, by our induction hypothesis,
0 ∈ 𝜈𝑤′(𝜓) for all 𝑤

′ such that 𝑤𝑅𝑤′ or 0 ∈ 𝜈𝑤′(𝜒) for all 𝑤
′ such that 𝑤𝑅𝑤′; and, so, 0 ∈ 𝜈𝑤′(𝜙) for all

𝑤′ such that 𝑤𝑅𝑤′.

Implication If 𝜙 = (𝜓 ⇒ 𝜒), then 1 ∈ 𝜈𝑤(𝜙) implies that for all 𝑤′ such that 𝑤𝑅𝑤′, 1 ∈ 𝜈𝑤′(𝜒)
if 1 ∈ 𝜈𝑤′(𝜓), and, so, by the fact that 𝑅 is transitive, for all 𝑤″ such that 𝑤′𝑅𝑤″, 𝑤𝑅𝑤″, a fortiori
1 ∈ 𝜈𝑤″(𝜒) if 1 ∈ 𝜈𝑤″(𝜓); and, so 1 ∈ 𝜈𝑤′(𝜙). Alternatively, if 0 ∈ 𝜈𝑤(𝜙), then for all 𝑤′ such that
𝑤𝑅𝑤′, 0 ∈ 𝜈𝑤′(𝜒) if 1 ∈ 𝜈𝑤′(𝜓). So, if𝑤

″ is such that𝑤′𝑅𝑤″,𝑤𝑅𝑤″ as𝑅 is transitive, and 0 ∈ 𝜈𝑤″(𝜒) if
1 ∈ 𝜈𝑤″(𝜓). Thus, 0 ∈ 𝜈𝑤′(𝜙).

First-Order Universal Quantification If 𝜙 = ∀𝑥𝜓(𝑥), then 1 ∈ 𝜈𝑤(𝜙) implies that for all 𝑑 ∈ 𝐷,
1 ∈ 𝜈𝑤(𝜓(𝑑)), and, so, by our induction hypothesis, 1 ∈ 𝜈𝑤′(𝜓(𝑑)) for all 𝑤

′ such that 𝑤𝑅𝑤′, and so
1 ∈ 𝜈𝑤′(𝜙). Alternatively, if 0 ∈ 𝜈𝑤(𝜙), then for some 𝑑 ∈ 𝐷, 0 ∈ 𝜈𝑤(𝜓(𝑑)), and, so, by our induction
hypothesis, 0 ∈ 𝜈𝑤′(𝜓(𝑑)) for all 𝑤

′ such that 𝑤𝑅𝑤′; and, so 0 ∈ 𝜈𝑤′(𝜙).

Second-Order Universal Quantification If 𝜙 = ∀𝑋𝑛𝜓(𝑋𝑛), then 1 ∈ 𝜈𝑤(𝜙) implies that for any
𝑃with 𝐼𝑤(𝑃) = ⟨𝑃+, 𝑃−⟩ and𝑃+∪𝑃− = 𝐷𝑛, wemust have that1 ∈ 𝜈𝑤(𝜓(𝑃)), and so, by our induction
hypothesis, 1 ∈ 𝜈𝑤′(𝜓(𝑃)) for any 𝑤

′ ∈ 𝑊 with 𝑤𝑅𝑤′; and so 1 ∈ 𝜈𝑤′(𝜙). Alternatively, if 0 ∈ 𝜈𝑤(𝜙),
then for some 𝑃with 𝐼𝑤(𝑃) = ⟨𝑃+, 𝑃−⟩ and 𝑃+ ∪ 𝑃− = 𝐷𝑛, we must have that 0 ∈ 𝜈𝑤(𝜓(𝑃)), and so,
by our induction hypothesis, 0 ∈ 𝜈𝑤′(𝜓(𝑃)) for any 𝑤

′ ∈ 𝑊with 𝑤𝑅𝑤′; and so, 0 ∈ 𝜈𝑤′(𝜙). �

We can use this to show that for any sentence 𝜙 ∈ LPQ2⇒(𝜏), for all 𝑤 ∈ 𝑊, 𝜈𝑤(𝜙) ≠ ∅, and
𝜈𝑤(𝜙) ⊆ {0, 1}, both of which we require as this is a solely paraconsistent (opposed to paracomplete)
logic. In particular, the only case we need to verify is the conditional, and all of the other cases follow
(by case, I mean if we were to induct on the complexity of 𝜙) by the fact they hold for LPQ, and it is
obvious for the second-order quantification case. To see it holds for conditionals, note, obviously, if
𝜙 = (𝜓 ⇒ 𝜒), then for all 𝑤 ∈ 𝑊, 𝜈𝑤(𝜙) ⊆ {0, 1}, by definition. Then, to see 𝜈𝑤(𝜙) ≠ ∅, assume
that it is: so 0 ∉ 𝜈𝑤(𝜙) and 1 ∉ 𝜈𝑤(𝜙). Then by our above conditions, there are 𝑤′, 𝑤″ ∈ 𝑊 such
that 𝑤𝑅𝑤′ and 𝑤𝑅𝑤″ with 1 ∈ 𝜈𝑤′(𝜓) and 1 ∉ 𝜈𝑤′(𝜒), and so, 1 ∉ 𝜈𝑤(𝜒) for otherwise 1 ∈ 𝜈𝑤′(𝜒)
by Theorem 3.3.1. But, 𝑤″ is such that 1 ∈ 𝜈𝑤″(𝜓) and 0 ∉ 𝜈𝑤″(𝜒), and so, 0 ∉ 𝜈𝑤(𝜒), by the same
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reasoning as before. But, then, this violates our induction hypothesis that∅ ≠ 𝜈𝑤(𝜒) ⊆ {0, 1}. Hence,
either 0 ∈ 𝜈𝑤(𝜙) or 1 ∈ 𝜈𝑤(𝜙).

As we have just seen, this (Theorem 3.3.1) is a nice result, and makes proofs easy to work with in this
logic. And gives us some leeway to philosophically justify the conditional semantics: we examineways
the model could “go wrong” (in terms of ways it could be more consistent), and see if the conditional
would still hold in these situations.

3.3.2 Conditionals are (𝑛 + 1)/𝑛 Contraction Free

We shall now define what it means for an operator to be (𝑛 + 1)/𝑛 contraction free. But, first we need
to define some sentences. We can inductively define 𝜙>𝑛 for an operator > as follows: 𝜙>0 ≔ 𝐴2 and
𝜙>𝑛+1 ≔ (𝐴1 > 𝜙

>
𝑛 ).

We say an operator > is (𝑛 + 1)/𝑛 contraction free if for all positive integral 𝑛, 𝜙>𝑛+1 ⊭ 𝜙>𝑛 . Restall
[Res94, Chapter 13] showed if we have an operator >which is not (𝑛+1)/𝑛 contraction free, satisfies
modus ponens, and is derivable from a conditional of choice, then the logic is not robustly contraction
free. These results that the conditionals of LPQ2⇒ are (𝑛 + 1)/𝑛 contraction free shows the issue (if
there at all) does not lie with the conditionals themselves. This provides some8 assurance LPQ2⇒ is
itself (𝑛 + 1)/𝑛 contraction free.

Wewill nowdefine our counter-models, and thenwe shall show that these are indeed counter-models,
for each positive integral 𝑛 to 𝜙→𝑛+1 ⊨ 𝜙→𝑛 . 𝔐𝑛 is a {𝐴1, … , 𝐴𝑛, 𝑐}-structure, where each𝐴𝑖 is a 1-place
predicate and 𝑐 a name. We will abuse notation here, and write 𝐴𝑖 as shorthand for 𝐴𝑖𝑐. 𝔐𝑛 ≔
⟨𝑊,𝐷, 𝑅, 𝐼, @⟩, where we define each element as follows.

𝑊 ≔ {𝑤1, 𝑤2, … , 𝑤2𝑛}. 𝐷 ≔ {𝑑}, and the name 𝑐 of our vocabulary refers to 𝑑. @ ≔ 𝑤1. 𝑅 is
defined in such a way that given distinct 𝑣, 𝑤 ∈ 𝑊, 𝑣𝑅𝑤 if and only if for each 𝐴𝑖, 𝜈𝑣(𝐴𝑖) ⊆ 𝜈𝑤(𝐴𝑖).
Moreover, @𝑅@, and 𝑤𝑅𝑤 for 𝑤 ∈ 𝑊 implies that@𝑅@. Clearly, then, 𝑅 is transitive, and satisfies
our feeding-forward of atomic formulæ– as our only atomic formulæ are𝐴𝑖s. Finally, 𝐼𝑤𝑖(𝐴𝑗) = {0, 1}
(and 𝐼𝑤𝑖(𝐴𝑗) = {0} otherwise) if and only if when we write 𝑖 − 1 in binary, with the least-significant
bit on the left, and ensuring that there are 𝑛 digits9 – adding extra 0s if required, the 𝑗th digit (from
the left, and counting from 1) is a 1.

Theorem 3.3.2. LPQ2⇒ is such that for any positive integral 𝑛, 𝜙→𝑛+1 ⊭ 𝜙
→
𝑛 .

Proof: we proceed by induction on 𝑛. Our basis case is when 𝑛 = 1. A counter-model is𝔐2.

Our induction hypothesis is that for all 𝑛 ≤ 𝑘, then𝔐𝑛+1 is such that

• the world 𝑤 ∈ 𝑊 where 𝜈𝑤(𝐴1) = {0, 1}, and for 1 < 𝑖 ≤ 𝑛 + 1, 𝜈𝑤(𝐴𝑖) = {0} is such that
𝜈𝑤(𝜙

→
𝑛−1) = {0};

• 𝜈@(𝜙
→
𝑛 ) = {0};

• 1 ∈ 𝜈@(𝜙
→
𝑛+1).

We will now verify that𝔐2 satisfies these three items. For the first, 𝜙→𝑛−1, when 𝑛 = 1 is 𝜙→0 ≔ 𝐴2, so
we require that in the world where only 𝐴1 is satisfied, 𝐴2 is not. Well, this holds by definition (and
such a world clearly exists). For the second item, 𝜙→𝑛 is𝐴1 → 𝐴2, we can see this is easily not satisfied

8Although, admittedly, not much.
9I.e., if 𝑛 = 3, and 𝑖 = 4, then 𝑖 − 1 is written as 110.
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in virtue of the world discussed previously: where only 𝐴1 is satisfied but 𝐴2 is not. Finally, for the
third item, 𝜙→𝑛+1 is 𝐴1 → (𝐴1 → 𝐴2). As 0 ∈ 𝜈@(𝐴1 → 𝐴2) ∩ 𝜈@(𝐴1), we know that in every world
the “contraposing” clause of our conditional is satisfied: for all𝑤 ∈ 𝑊, 0 ∈ 𝜈𝑤(𝐴1 → 𝐴2) implies that
0 ∈ 𝜈𝑤(𝐴1). So, we just need to show that for all 𝑤 ∈ 𝑊, 1 ∈ 𝜈𝑤(𝐴1) implies that 1 ∈ 𝜈𝑤(𝐴1 → 𝐴2).
This follows if 1 ∈ 𝜈𝑤(𝐴1 → 𝐴2) is true for our world 𝑤 in our proof of the first item. This is
certainly true, because the only world that is accessible from 𝑤 is the trivial world. Hence, item three
is proved.

Induction step: 𝑛 = 𝑘 + 1. First, note that by our induction hypothesis, there is a world 𝑤 in𝔐𝑘+1
such that 𝜈𝑤(𝐴1) = {0, 1} and for 1 < 𝑖 ≤ 𝑘 + 1, 𝜈𝑤(𝐴𝑖) = {0}, and 𝜈𝑤(𝜙

→
𝑘−1) = {0}.

Then, it is obvious that the world 𝑤′ in𝔐𝑘+2 such that 𝜈𝑤′(𝐴1) = {0, 1} = 𝜈𝑤′(𝐴𝑘+2) and for 1 <
𝑖 ≤ 𝑘 + 1, 𝜈𝑤′(𝐴𝑖) = {0} is such that 𝜈𝑤′(𝜙

→
𝑘−1) = {0}. Because 𝑤′, and the worlds accessible from

𝑤′ are identical to 𝑤 and those accessible from 𝑤; i.e., same number, relations, truth values; except
with respect to 𝐴𝑘+2, which does not even exist in 𝑤 and the worlds accessible from 𝑤, and 𝐴𝑘+2 is a
glut in 𝑤′ and the worlds accessible from 𝑤′, and clearly𝐴𝑘+2 being glutty has nothing to do with the
conditional facts about𝐴1 and𝐴2 – so we see that 𝑤 and 𝑤′ are “isomorphic” with respect to𝐴1 and
𝐴2, and consequently the conditional facts about𝐴1 and𝐴2.

But, then, the world 𝑤″ in𝔐𝑘+2 such that 𝜈𝑤″(𝐴1) = {0, 1} and for 1 < 𝑖 ≤ 𝑘 + 2, 𝜈𝑤″(𝐴𝑖) = {0} is
such that 𝜈𝑤″(𝜙

→
𝑘 ) = {0} because 𝑤″𝑅𝑤′ and 1 ∈ 𝜈𝑤′(𝐴1), but 1 ∉ 𝜈𝑤′(𝜙

→
𝑘−1) = {0}. This satisfies the

first item of our induction.

The second item, then follows because @ of 𝔐𝑘+2 is such that @𝑅𝑤″, and 1 ∈ 𝜈𝑤″(𝐴1), but 1 ∉
𝜈𝑤″(𝜙

→
𝑘 ).

Finally, note that 1 ∈ 𝜈@(𝐴1) implies that 1 ∈ 𝜈@(𝜙
→
𝑘+1) vacuously, and 0 ∈ 𝜈@(𝜙

→
𝑘+1) implies that

0 ∈ 𝜈@(𝐴1) because 0 ∈ 𝜈@(𝐴1) by construction. Moreover, as 0 ∈ 𝜈@(𝜙
→
𝑘+1) and 0 ∈ 𝜈@(𝐴1), for

all worlds 𝑤 of𝔐𝑘+2, 0 ∈ 𝜈𝑤(𝜙
→
𝑘+1) and 0 ∈ 𝜈𝑤(𝐴1); so, clearly, for all 𝑤 such that 𝑤𝑅@, 0 ∈ 𝜈𝑤(𝐴1)

implies that 0 ∈ 𝜈𝑤(𝜙
→
𝑘+1). Then the result follows if for all worlds 𝑤 of𝔐𝑘+2, 1 ∈ 𝜈𝑤(𝐴1) implies

1 ∈ 𝜈𝑤(𝜙
→
𝑘+1).

Note this follows if 1 ∈ 𝜈𝑤″(𝜙
→
𝑘+1), as this is the “first” world where 𝐴1 is true. This is the case. For,

in every world 𝑤 accessible from 𝑤″, we must have that 𝜈𝑤(𝐴1) = {0, 1}, and so in order to show that
a sentence of the form 𝜙→𝑙 for some 𝑘 holds at each 𝑤, we just need to show that 𝜙→𝑙−1 holds at every
world accessible from 𝑤.

We can define a concept called “layer”. We say the 𝑖th layer of worlds accessible from 𝑤″ is defined
inductively as follows: the 0th layer contains only 𝑤″10 Then, the (𝑛 + 1)th layer is a subset of the
worlds of𝔐𝑘+2 such that each 𝑤 in the (𝑛 + 1)th layer is such that 𝑤″𝑅𝑤, and, the (𝑛 + 1)th layer
contains all and only those worlds 𝑤 which are such that there is a world 𝑣 in the 𝑛th layer with 𝑣𝑅𝑤
and there does not exist any world 𝑢 such that 𝑣𝑅𝑢 and 𝑢𝑅𝑤 – i.e., there is no world between the
two.

By our earlier observation, every world in one of these layers has a glut at𝐴1.

We can see there are 𝑘+2 layers11 and the (𝑘+1)th layer contains only the fully trivial world. Then, in
the (𝑘 + 1)th layer, every world 𝑤 is such that 1 ∈ 𝜈𝑤(𝐴1) ∩ 𝜈𝑤(𝐴2) as it is fully trivial (or we can note
that the conditional is trivially satisfied by the lack of a world accessible from 𝑤). So, every world 𝑤 in

10𝑤″ is not accessible from 𝑤″, hence we 0-index it.
11The 𝑖th layer is such that the number of gluts, apart from𝛢1, in each of the worlds it contains is equal to 𝑖 – each layer

can be characterised totally by this property: it contains only and all those worlds with 𝛢1 glutty and 𝑖 other 𝛢𝑗s glutty.
There are 𝑘 + 1 other𝛢𝑗s, so 𝑘 + 2 layers.

x



the 𝑘th layer is such that 1 ∈ 𝜈𝑤(𝜙
→
1 ) as well as 1 ∈ 𝜈𝑤(𝐴1). Moreover, every world 𝑤 in the (𝑘 − 1)th

layer is such that 1 ∈ 𝜈𝑤(𝜙
→
2 ), as well as 1 ∈ 𝜈𝑤(𝐴1). This continues until the 0th layer, and, so, we

inductively get that 1 ∈ 𝜈𝑤″(𝜙
→
𝑘+1), completing the proof. �

Corollary 3.3.3. LPQ2⇒ is such that for any positive integral 𝑛, 𝜙⇒𝑛+1 ⊭ 𝜙
⇒
𝑛 .

Proof: it can be easily verified that for any formulæ𝜙,𝜓, wemust have𝜙 → 𝜓 ⊨ 𝜙 ⇒ 𝜓, and so, we see
that𝔐𝑛+1models 𝜙⇒𝑛+1 as it models 𝜙→𝑛+1, by Theorem 3.3.2. Similarly, by the proof of Theorem 3.3.2,
we see that𝔐𝑛+1 does not model 𝜙→𝑛 in virtue of the fact that it does not model 𝜙⇒𝑛 . a fortiori,𝔐𝑛+1
does not model 𝜙⇒𝑛 , and so𝔐𝑛+1 is a suitable counter-model. �

Corollary 3.3.4. LPQ2⇒ is such that for any positive integral 𝑛, 𝜙⇒𝑛+1 ⊭ 𝜙
→
𝑛 .

Proof: if 𝜙⇒𝑛+1 ⊨ 𝜙
→
𝑛 , then 𝜙⇒𝑛+1 ⊨ 𝜙

⇒
𝑛 , violating Corollary 3.3.3. �

Corollary 3.3.5. LPQ2⇒ is such that for any positive integral 𝑛, 𝜙→𝑛+1 ⊭ 𝜙
⇒
𝑛 .

Proof: the proof is similar to that of Corollary 3.3.3, and𝔐𝑛+1 is a suitable counter-model. �

These results are nice, but do not guarantee that the logic is robustly contraction free, and work in
this area should be a priority if one wants to use LPQ2⇒ for Candid (or evenNaïve) Set Theory – or,
in particular its (LPQ2⇒’s) derivatives which we shall see later on.

We now see LPQ2⇒ is not suitable for the job. We shall see a problemwith our second-order quanti-
fication, and will need to restrict it accordingly.

4 Identity and Second-Order Comprehension
Usually, when one uses second-order logic, it is is convenient to define identity using second-order
quantification. For example, here is such a typical way:

(𝑥 = 𝑦) ≔ ∀𝑋1(𝑋1𝑥 ↔ 𝑋1𝑦).

The issue with this approach (which is similar to the reasoning in [HP18, pp. 5–6] –who suggest that
in second-order LP, we ought to define identity as a primitive) in LPQ2⇒ is that when we quantify
over the one-place predicates using ∀𝑋1, we quantify over the predicate 𝑄1, which is such that for
𝑤 ∈ 𝑊, 𝐼𝑤(𝑄

1) = ⟨𝐷,𝐷⟩. I.e., it holds – and, indeed, does not hold – for any object of the domain.
This, causes us to have that 0 ∈ 𝜈𝑤(𝑥 = 𝑦) for any objects 𝑥, 𝑦 ∈ 𝐷. But this means that even for truly
identical objects, the identity claim is evaluated as (at least) false. This certainly is problematic if we
are taking our semantics seriously (which I hope to do).

What I suggest, (as suggested in [HP18] we could instead define identity as a primitive) is to modify
our logic so we can only quantify over the predicates in the vocabulary, and all the possible classical
predicates. In fact, the problemwith identity is quite general: every second-order universal quantifier
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∀𝑋𝜙(𝑋), where𝑋 is genuinely free in 𝜙, will, on these semantics turn out to be (at least) false – and
sentences of the form ∃𝑋𝜙(𝑋), with 𝑋 genuinely free in 𝜙, will turn out to be (at least) true. So,
I think this also provides further evidence for changing the logic. Let us see, then, what such a new
logicwould look like; Iwill call itLPQ2c⇒ to represent our restriction toonly classical non-vocabulary
predicates.

4.1 LPQ2c⇒ Semantics
The only change, then, that we make to LPQ2⇒, is that we restrict second-order quantification to
classical predicates, and those of the vocabulary. Our semantics are identical otherwise: the same
terms, formulæ, &c. A prima facie justification for this change in semantics is that we do not want
to postulate more gluts than necessary: by only quantifying over classical predicates (that are not in
the vocabulary), we are not pre-supposing any gluts. If there are any glutty predicates, then they come
from our vocabulary and our interpretations in the models.

In order to restrict our attention to classical predicates and those already in the vocabulary, we define
𝜏𝐷,𝛲

𝑐
to only add names for classical predicates – opposed to 𝜏𝐷,𝛲 which adds names for all paracon-

sistent predicates. Then, we ensure that if 𝑄𝑛 ∈ 𝜏𝐷,𝛲
𝑐
is a predicate but 𝑄𝑛 ∉ 𝜏, then for all 𝑤,

𝐼𝑤(𝑄
𝑛) = ⟨𝑄+, 𝑄−⟩, where𝑄+ ∩ 𝑄− = ∅, ensuring that it is classical. And we still have the condition

that for all 𝑤, 𝑤′ ∈ 𝑊, 𝐼𝑤(𝑄
𝑛) = 𝐼𝑤′(𝑄

𝑛). Then our clauses for 𝜈 use LPQ2c⇒(𝜏𝐷,𝛲
𝑐
) instead of

LPQ2⇒(𝜏𝐷,𝛲):

• 1 ∈ 𝜈𝑤(∀𝑋
𝑛𝜙(𝑋𝑛)) if and only if every 𝑛-place predicate 𝑄𝑛 of LPQ2c⇒(𝜏𝐷,𝛲

𝑐
) is such that

1 ∈ 𝜈𝑤(𝜙(𝑄
𝑛)).

• 0 ∈ 𝜈𝑤(∀𝑋
𝑛𝜙(𝑋𝑛)) if and only if some 𝑛-place predicate 𝑄𝑛 of LPQ2c⇒(𝜏𝐷,𝛲

𝑐
) is such that

0 ∈ 𝜈𝑤(𝜙(𝑄
𝑛)).

Note, that all our results from subsection 3.3 still hold for LPQ2c⇒.

4.2 Identity Re-visited
Let us now consider how identity works in LPQ2c⇒. Defining it in the following way:

(𝑥 = 𝑦) ≔ ∀𝑋1(𝑋1𝑥 ↔ 𝑋1𝑦).

First, consider 𝑑1 of the domain. Then, certainly, for all 𝑤 ∈ 𝑊, 1 ∈ 𝜈𝑤(𝑑1 = 𝑑1) on the above
definition, as 𝑑1 is in the same extensions and anti-extensions as itself by definition. If we consider 𝑑1
and 𝑑2 of the domain, which are distinct elements of𝐷, then there there is a classical predicate which
is (only) true of one, and (only) false of the other, so 0 ∈ 𝜈𝑤(𝑑1 = 𝑑2).

How, then, do we get glutty identity claims? First, we shall observe that if 1 ∈ 𝜈𝑤(𝑑1 = 𝑑2), then
𝑑1 = 𝑑2 in the meta-theory; i.e., they are the same element of𝐷. To see this: if 1 ∈ 𝜈𝑤(𝑑1 = 𝑑2)means
that 1 ∈ 𝜈𝑤(𝑋

1𝑑1 ↔ 𝑋1𝑑2) for every classical𝑋
1, and as 𝜈𝑤(𝑋

1𝑑) = 𝜈𝑤′(𝑋
1𝑑) for any worlds 𝑤, 𝑤′,

by our definition, we must have that 𝑌𝑑2 holds where 𝑌 is the classical predicate that is only true of
𝑑1 and nothing else. This ensures 𝑑1 = 𝑑2 in the meta-theory. So, an identity claim 𝑑1 = 𝑑2, of the
logic, is glutty if and only if 0 ∈ 𝜈𝑤(𝑑1 = 𝑑2) and 𝑑1 = 𝑑2. To get 0 ∈ 𝜈𝑤(𝑑1 = 𝑑2) in this case, we need
a one-place predicate of the vocabulary which has a glut at 𝑑1 (or at 𝑑2 as they are equal in the meta-
theory). So, we only have gluts in cases where there is genuine identity (from the perspective of the
meta-theory) and a glut occurs, at the point in question, for some predicate of the vocabulary.
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This, to me, seems like a nice characterisation of paraconsistent identity. And, I would be particularly
interested to see how it plays out in something like inconsistent arithmetic.

4.3 Second-Order Comprehension
The issue now, however, is that we cannot rely on second-order comprehension, which is also com-
monly used in classical second-order logic. Second-order comprehension is the the axiom schema,
such that for any 𝜙with 𝑛 free variables, we have

∃𝑋𝑛∀𝑥1 ⋯∀𝑥𝑛 [𝑋
𝑛𝑥1 ⋯𝑥𝑛 ↔ 𝜙(𝑥1, … , 𝑥𝑛)] .

I.e., there is an 𝑛-place predicate, for any formula with 𝑛 free variables such that they agree (from the
perspective of the logic) on truth and falsity. Thismeans that we can quantify over first-order formulæ
in some sense (although not second-order).

The reason why this does not work in LPQ2c⇒ is that we only can quantify over our predicates of
the vocabulary (which all have fixed arity), and the classical predicates. The classical predicates cannot
encode inconsistent information as they are classical, so can’t be used to encode information about
inconsistent sentences – which could always possibly exist. And the predicates of the language are
already being used.

Why this is a problem shall be explained in our next section, as it makes some things awkward for us
when we return to Naïve Set Theory.

5 Naïve Comprehension
Recall, then, the Axiom Schema of Naïve Comprehension, where 𝜙(𝑥) is a formula with all free vari-
ables among 𝑥:

∃𝑦∀𝑥 [𝑥 ∈ 𝑦 ↔ 𝜙(𝑥)] .

If LPQ2c⇒ satisfied the second-order comprehension schema, we would be able to define the Axiom
Schema of Naïve Comprehension as

∀𝑋1∃𝑦∀𝑥 [𝑥 ∈ 𝑦 ↔ 𝑋1𝑥] ,

noting that it would no longer be a schema, but a single axiom.

We do not have that option available to us. And, so, if we are to use the power of second-order logic12,
we need to rethink our approach. What I suggest, then, is that we return to a classical composition-
ality approach. That is to say, we indeed have our Axiom of Naïve Comprehension (in LPQ2c⇒),
which lets us use all sets defined by any arbitrary one-place classical predicate, in addition to the sets
corresponding to the one-place predicates of our vocabulary13.

12Certainly, we could still just add the Axiom Schema of Naïve Comprehension. I am just running with the idea that
we should utilise second-order logic; and, at this point, the reader might be discouraged from using second-order logic in
Naïve Set Theory. I think this is a valid response.

13It would be beneficial to ensure that the model has interpretations and names for all the “restricted” versions of pre-
dicates in the language: that is, for 𝑛 > 1, if 𝛲𝑛 is an 𝑛-place predicate, then for each 𝑥 ∈ 𝐷𝑛−1, there is a predicate 𝛲𝑛𝑥 ,
which is a one-place predicate defined to be 𝛲𝑛𝑥𝑦, with 𝑦 free – and, in addition, it would be beneficial to ensure that 𝑦
could appear in any position of the predicate. Otherwise, we would need an axiom schema allowing all atomic formulæ
of our logic to have a corresponding set. – This is a valid criticism: we still have to deal with all these cases. But, I am just
going “all in” on our Second-Order quantification in LPQ2c⇒.
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But, in this context, the Axiom ofNaïve Comprehension does not entail the Axiom Schema ofNaïve
Comprehension, so we need to add extra axioms to do that work for us. I suggest we add axioms,
much like the axiom of union to our formulation of Naïve Set Theory. I.e., we add an axiom – one
for each operator of our logic: ∧, ¬, ∀𝑥, ∀𝑋, and⇒ such that given the sets corresponding to 𝜙(𝑥)
and 𝜓(𝑥), we can construct the sets corresponding to 𝜙(𝑥) ∧ 𝜓(𝑥), ¬𝜙(𝑥), ∀𝑥𝜙(𝑥),&c.

We can easily justify the first two. For conjunction, add an Axiom of Intersection:

∀𝑥∀𝑦∃𝑧∀𝑡 [(𝑡 ∈ 𝑥 ∧ 𝑡 ∈ 𝑦) ↔ 𝑡 ∈ 𝑧] ,

and so given {𝑥; 𝜙(𝑥)} and {𝑥; 𝜓(𝑥)}, we can construct {𝑥; 𝜙(𝑥) ∧ 𝜓(𝑥)}; the sets corresponding to
𝜙(𝑥) and 𝜓(𝑦) exist by a suitable induction hypothesis.

We can also add an Axiom of Complements:

∀𝑥∃𝑧∀𝑡 [𝑡 ∉ 𝑥 ↔ 𝑡 ∈ 𝑧] ,

which allows us to construct {𝑥; ¬𝜙(𝑥)} from {𝑥; 𝜙(𝑥)}. Which is also easy to justify naïvely (just
look at naïve set theory in mathematical practice).

Now, what do we do for first and second order quantification and for the (non-contraposing) condi-
tional? Quantification I shall, regrettably, leave for this essay.

For the conditional, then we want the following axiom:

∀𝑥∀𝑦∃𝑧∀𝑡 [(𝑡 ∈ 𝑥 ⇒ 𝑡 ∈ 𝑦) ↔ 𝑡 ∈ 𝑧] ,

allowing us to construct {𝑥; 𝜙(𝑥) ⇒ 𝜓(𝑥)} given {𝑥; 𝜙(𝑥)} and {𝑥; 𝜓(𝑥)}. But, how would we
justify such an axiom?

We revise our semantics again. The issue with justifying this axiom, for me, in LPQ2c⇒, is as fol-
lows. My hope is that we use Candid Set Theory as our meta-theory, and reformulate Candid Set
Theory inside our meta-theory. But, with our current modal semantics, it is impossible for us, from
the perspective of the actual world in our model, to tell what other worlds there are. So, the truths
here depend on things we cannot know, for our meta-theory is unable to tell as as our meta-theory
depends on those facts – and so there is a vicious cycle.

Therefore, I believe we need to incorporate into LPQ2c⇒ the (very strong) principle, that for any
theory 𝑇, for each structure𝔐,𝔑 of our logic (which will be a sub-logic of LPQ2c⇒) that validates
𝑇 (i.e., is a model of 𝑇), if 𝐼@𝔐 = 𝐼@𝔑 (noting that this also requires that 𝐷𝔐 = 𝐷𝔑, and 𝔐, 𝔑
are structures of the same vocabulary), then𝔐 = 𝔑. Thus, that the entire structure is completely
determined by how it treats the atomic formulæ in the actual world.

So, from the perspective of the actual world, we can deduce the entire structure. This justifies our
use of the logic as our meta-theory, for we can, from the perspective of the actual world, deduce the
structure of the entire model.14

Thus, this justifies our use of

∀𝑥∀𝑦∃𝑧∀𝑡 [(𝑡 ∈ 𝑥 ⇒ 𝑡 ∈ 𝑦) ↔ 𝑡 ∈ 𝑧] ,

because everything is already determined in the actual world.

Let us see the final version of our logic. I call it LPQ2c⇒@, for the modal part (coming from our
conditional) depends only on the actual world.

14I use ‘we’ very loosely here – I mean something like “logic itself” as I am a realist; literal ‘we’ works for anti-realists.
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5.1 A Final Semantics
Our logic, LPQ2c⇒@ is almost exactly the same as LPQ2c⇒ but we “prune” some models, so that
given two 𝜏-structures,𝔐,𝔑, with the same domain𝐷 and satisfying the same theory 𝑇 in question,
are such that if they agree on the truth values (i.e., glutty iff glutty; only true iff only true; only false
iff only false) of every atomic formula of LPQ2c⇒(𝜏𝐷,𝛲

𝑐
) at the actual world, then𝔐 = 𝔑. The only

difference is that in LPQ2c⇒@ we do not allow any worlds to agree on all the same atomic formulæ;
i.e., for all 𝑤, 𝑤′ ∈ 𝑊, 𝐼𝑤 = 𝐼𝑤′ implies that 𝑤 = 𝑤′.

We give a method to choose the “true model” from any number of candidates.

Assumewe haveℳ– a set of 𝜏-structures𝔐, all satisfying𝑇, and all on the same domain𝐷, but each
𝐼@𝔐 is distinct from all the others. First, we calculate, for each𝔐 ∈ ℳ, |𝑊𝔐|. We then discard or
prune those models that do not have the maximal number of worlds.

This is the first principle: we prefer a maximal number of worlds. The reasoning for this is that it
“pushes” the fully inconsistent world (which must appear if there is a maximal number) “further”
into the model, and so is preferring consistency to inconsistency.

Then, if we still do not only have one model, we invoke our second principle: we prefer less truth –
for we (at least I) see truth as requiring more of a burden than falsity to be the case. So, we count the
number of atomic formulæ 𝜙 that are such that 1 ∈ 𝐼@𝔐(𝜙) for each𝔐 still inℳ, and we keep only
those models with the least number of true atomic formulæ in the actual world.

Finally, if that is still not enough, we, unfortunately, invoke a somewhat arbitrary principle that settles
the matter fully. Assuming the axiom of choice, well-order the atomic sentences of LPQ2c⇒(𝜏𝐷,𝛲

𝑐
)

as 𝜙𝛼, where 𝛼 is an ordinal. Then, repeat the following process, until we only have one element in
ℳ, which does eventually terminate – for otherwise every model would be the same, which would
only leave us with onemodel. Choose themodels𝔐 inℳ so that they differ from all the others with
respect to 𝐼@𝔐(𝜙𝛽), for the least 𝛽.

Note, the results of subsection 3.3 hold for LPQ2c⇒@, as the models used in Theorem 3.3.2 are the
uniquely determined maximal models given the actual world; we do not need to consider the second
or third principles.

6 Conclusion
I gave reasons for why I believe that Candid Set Theory should replace Naïve Set Theory. This took
us on a path of exploring second-order paraconsistent logic. We saw a basic logic LPQ2⇒, which
was not suitable for purpose; so, we moved to LPQ2c⇒. Because I am sensitive to the idea that we
should embed Candid Set Theory inside itself, I justified a final move to LPQ2c⇒@. We saw that
the properties of subsection 3.3 still hold for LPQ2c⇒@, giving us some, albeit, not much hope that
LPQ2c⇒@ can support Naïve Set Theory.

What we did not see, is that LPQ2c⇒@ is robustly contraction free, nor did we examine, in any de-
tail, the inferences possible in LPQ2c⇒@. Moreover, we did not show that LPQ2c⇒@ could support
Naïve Set Theory, and we did not prove that if LPQ2c⇒@ could support Naïve Set Theory, then we
would have models of Candid Set Theory. I suggest these things for interested readers in the future.
A possible roadmap for engagement with Candid Set Theory in LPQ2c⇒@ is:

• Check whether LPQ2c⇒@ has any totally objectionable inferences.
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• Prove LPQ2c⇒@ is robustly contraction free.

• Prove LPQ2c⇒@ can support Naïve Set Theory.

• Prove LPQ2c⇒@ can support Candid Set Theory – and examine such models.

Any one of these steps could fail, and in which case the project, at least using LPQ2c⇒@, would have
to be abandoned. The goal thenwould be to find another logic suitable for Candid Set Theory, which
may not be second-order.
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